To identify the viruses in tree peony plants associated with the symptoms of yellowing, leaf rolling, stunted growth, and decline, high-throughput sequencing of small RNA and mRNA was conducted from a single symptomatic plant. Bioinformatic analyses and reconstruction of viral genomes indicated mixed viral infections involving cycas necrotic stunt virus (CNSV), apple stem grooving virus (ASGV), lychnis mottle virus (LycMoV), grapevine line pattern virus (GLPV), and three new viruses designated as peony yellowing-associated citrivirus (PYaCV, Citrivirus in Betaflexiviridae), peony betaflexivirus 1 (PeV1, unclassified in Betaflexiviridae), and peony leafroll-associated virus (PLRaV, Ampelovirus in Closteroviridae). PYaCV was 8,666 nucleaotides (nt) in length, comprising three open reading frames (ORFs) and shared 63.8–75.9% nucleotide sequence identity with citrus leaf blotch virus (CLBV) isolates. However, the ORF encoding the replication-associated protein (REP) shared 57% and 52% sequence identities at the nt and amino acid (aa) level, respectively, with other reported CLBV isolates, which were below the criterion for species classification within the family Betaflexiviridae. Recombination analysis identified putative recombination sites in PYaCV, which originated from CLBV. PeV1, only identified from the transcriptome data, was 8,124 nt in length with five ORFs encoding the REP (ORF1), triple gene block (TGB, ORF2–4) and coat protein (CP, ORF5) proteins. Phylogenetic analysis and sequence comparison showed that PeV1 clustered with an unassigned member, the garlic yellow mosaic-associated virus (GYMaV) within the Betaflexiviridae family, into a separate clade. Partial genome sequence analysis of PLRaV (12,545 nt) showed it contained seven ORFs encoding the partial polyprotein 1a, the RNA-dependent RNA polymerase (RdRp), two small hydrophobic proteins p11 and p6, HSP70h, p55, and a CP duplicate, which shared low aa sequence identity with Closteroviridae family members. Phylogenetic analysis based on the aa sequences of RdRp or HSP70h indicated that PLRaV clustered with grapevine leafroll-associated virus 1 (GLRaV-1) and GLRaV-13 in the Ampelovirus genus. Field investigation confirmed the wide distribution of these viruses, causing mixed infections of peony plants in Beijing.
BackgroundCannas are popular ornamental plants and widely planted for the beautiful foliage and flower. Viral disease is a major threaten to canna horticulture industry. In the city of Beijing, mosaic disease in canna was frequently observed, but the associated causal agent and its biological characterization is still unknown.ResultsAfter small RNA deep sequencing, 36,776 contigs were assembled and 16 of them shared high sequence identities with the different proteins of Sugarcane mosaic virus (SCMV) of the size ranging from 86 to 1911 nt. The complete genome of SCMV isolate (canna) was reconstructed by sequencing all cDNA clones obtained from RT-PCR and 5′\3′ RACE amplifications. SCMV-canna isolate showed to have a full RNA genome of 9579 nt in length and to share 78% nt and 85% aa sequence identities with SCMV isolates from other hosts. The phylogenetic tree constructed based on the full genome sequence of SCMV isolates allocated separately the canna-isolate in a distinct clade, indicating a new strain. Recombination analyses demonstrated that SCMV-canna isolate was a recombinant originating from a sugarcane-infecting isolate (major parent, acc. no. AJ310103) and a maize-infecting isolate (minor parent, acc. no. AJ297628). Pathogenicity test showed SCMV-canna could cause typical symptoms of mosaic and necrosis in some tested plants with varying levels of severity but was less virulent than the isolate SCMV-BJ. Field survey showed that the virus was widely distributed.ConclusionsThis study identified SCMV as the major agent causing the prevalent mosaic symptom in canna plants in Beijing and its genomic and biological characterizations were further explored. All these data enriched the knowledge of the viruses infecting canna and would be helpful in effective disease management in canna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.