When the Haiyang-2B (HY-2B) was launched into space to form a star network with the Haiyang-2A (HY-2A), it provided new data sources for the sea ice research of the Earth’s polar regions. The ability of altimeter echoes to distinguish sea ice and sea water is usable in operational ice charting. In this research study, the level 1B (L1B) data of HY-2A/B altimeter from November 2018 was used to analyze the altimeter waveforms from the polar regions. The Suboptimal Maximum Likelihood Estimation (SMLE) and Offset Center of Gravity (OCOG) tracking packages could maintain the waveform characteristics of diffused and quasi-specular surfaces by comparison. Also, they could be utilized to distinguish sea ice from seawater in the polar regions. It was determined that the types of echoes obtained from the seawater were diffuse. Also, some “ocean-like” waveform data had existed for the old ice formations in the Arctic regions during the study period. The types of echoes obtained from Arctic sea ice were found to be mainly quasi-specular. In the present study, three methods (Threshold segmentation, K-nearest-neighbor (KNN), and Lib-Support Vector machine (LIBSVM)) with four waveform parameters (Automatic Gain Control (AGC) and Pulse Peaking (PP) values of the Ku and C Bands) were adopted to distinguish between the sea ice and seawater areas. The accuracy rate of the separation results for the LIBSVM except band Ku from HY-2B ALT was found to be less than 40% in Antarctic. Meanwhile, the other two methods were observed to have maintained the waveforms correctly at accuracy rates of approximately 80% in Antarctic and the Arctic. In addition, the observed distinguishing errors were located in the regions of the old ice of the Arctic region. In addition, due to the summer melting processes, the large number of ice floes and the snow cover had made it difficult to distinguish the seawater and sea ice in the Antarctic regions.
This study examines the characteristics, statistics, and mixing effects of internal solitary waves (ISWs) observed in the northern Yellow Sea (YS) during the summers of 2018 and 2019. The mooring stations are located between offshore islands with rough topographic features. Throughout the observation period, the ISWs with vertical displacements of up to 10 m induced prevailing high–frequency (3–10 min period) temperature variations. Synthetic aperture radar (SAR) images showed that the observed ISWs propagate in zonal directions generated around the islands where internal–tide–generating body force is strong. The estimated ISW propagation speed ranges from 0.16 to 0.25 m s−1, which agrees with the Korteweg–de Vries (KdV) model. The ISW intensity exhibits a clear spring–neap cycle corresponding to the local tidal forcing. The constant occurrence of ISWs at low tide suggests an important generation site where the ISWs are tidally generated. The ray–tracing result indicates that this generation site appears to be located at a strait between Dahao and Xiaohao islands. A generalized KdV model successively reproduces the propagation process from the generation site to the mooring station. Following the passage of ISWs, microstructure profiling observations reveal a high turbulent kinetic energy dissipation rate (10−6 W kg−1). The prevalence of ISWs in the study area is believed to play a crucial role in regulating vertical heat and nutrient transport, thereby modulating the biogeochemical cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.