Because they were used for decades to present visual stimuli in psychophysical and psychophysiological studies, cathode ray tubes (CRTs) used to be the gold standard for stimulus presentation in vision research. Recently, as CRTs have become increasingly rare in the market, researchers have started using various types of liquid-crystal display (LCD) monitors as a replacement for CRTs. However, LCDs are typically not cost-effective when used in vision research and often cannot reach the full capacity of a high refresh rate. In this study we measured the temporal and spatial characteristics of a consumer-grade LCD, and the results suggested that a consumer-grade LCD can successfully meet all the technical demands in vision research. The tested LCD, working in a flash style like that of CRTs, demonstrated perfect consistency for initial latencies across locations, yet showed poor spatial uniformity and sluggishness in reaching the requested luminance within the first frame. After these drawbacks were addressed through software corrections, the candidate monitor showed performance comparable or superior to that of CRTs in terms of both spatial and temporal homogeneity. The proposed solution can be used as a replacement for CRTs in vision research.
Inhibition of return (IOR) refers to slower responses to targets at a previously cued location than that at an uncued location. The time course of IOR has long been a topic of interest in the field. Investigations into the time course of IOR are typically performed by examining the magnitude of IOR under various cue-target onset asynchrony (CTOA) conditions. Therefore, the results are vulnerable to influence of factors that could affect the target processes (e.g., the frequency of the target type). In the present study, steady-state visual evoked potentials (SSVEPs) were implemented to directly take a continuous measurement of the degree to which cued location is processed, eliminating the influence mentioned above. The results indicate that, relative to the baseline interval (−400 to 0 ms), the presence of peripheral cues generated a typical two-stage effect on the SSVEP amplitude evoked by a 20 Hz flicker. Specifically, after the onset of the peripheral cues, the SSVEP amplitude first showed a significant increase, which subsequently turned into a significant inhibition effect after 200 ms. These results provide a continuous time course diagram of the cueing effect and suggest an effective way for future investigations of controlling the masking effects of target stimuli processing on IOR.
Inhibition of return (IOR) refers to slower responses to targets that occur at a previously attended location than to those at control locations. Previous studies on the impact of task difficulty on IOR have shown conflicting results. However, these studies failed to match low-level characteristics of stimuli (e.g., size, color, and luminance) across difficulty levels, and so might have confounded the effect of task difficulty with that of stimulus characteristics. Hence, whether and how task difficulty modulates IOR remain largely unknown. This study utilized the event-related potentials (ERPs) technique in combination with a cue-target paradigm to tackle this question. Task difficulty was manipulated by changing the position of a gap in a rectangle stimulus, while stimulus size, color, and luminance were precisely matched. IOR was observed in reaction times across all difficulty levels but was found in accuracy at the medium level only. The modulation effect of task difficulty on IOR was also evident in the N1 and P2 ERP components, which showed significantly weaker IOR effects at the medium difficulty level than at the easy and hard levels. It is suggested that the modulation of IOR by task difficulty involves both perceptual and post-perceptual processes.
Social dominance is an important feature of social life. Dominance has been proposed to be one of two trait dimensions underpinning social judgments of human faces. Yet, the neural bases of the ability to identify different dominance levels in others based on intrinsically facial cues remains poorly understood. Here, we used event-related potentials to determine the temporal dynamics of facial dominance evaluation based on facial features signaling physical strength/weakness in humans. Twenty-seven participants performed a dominance perception task where they passively viewed faces with different dominance levels. Dominance levels did not modulate an early component of face processing, known as the N170 component, but did modulate the late positive potential (LPP) component. These findings indicate that participants inferred dominance levels at a late stage of face evaluation. Furthermore, the highest level of dominant faces and the lowest level of submissive faces both elicited higher LPP amplitudes than faces with a neutral dominance level. Taken together, the present study provides new insights regarding the dynamics of the neurocognitive processes underlying facial dominance evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.