Human dihydroorotate dehydrogenase (hDHODH) is an attractive tumor target essential to de novo pyrimidine biosynthesis. Novel potent hDHODH inhibitors with low toxicity are urgently needed. Herein, we demonstrate the isolation of 25 ascochlorin (ASC) derivatives, including 13 new ones, from the coral-derived fungus Acremonium sclerotigenum, and several of them showed pronounced inhibitions against hDHODH and triple-negative breast cancer (TNBC) cell lines, MDA-MB-231/-468. Interestingly, we found that hDHODH is required for proliferation and survival of TNBC cells, and several ASCs significantly inhibited TNBC cell growth and induced their apoptosis via hDHODH inhibition. Furthermore, the novel and potent hDHODH inhibitors (1 and 21) efficiently suppressed tumor growth in patient-derived TNBC xenograft models without obvious body weight loss or overt toxicity in mice. Collectively, our findings offered a novel lead scaffold as the hDHODH inhibitor for further development of potent anticancer agents and a potential therapeutic strategy for TNBC.
One new depsidone derivative, aspergillusidone H (3), along with seven known biosynthetically related chlorinated polyketides, were obtained from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Their structures were determined by comprehensive physicochemical and spectroscopic data interpretation. Notably, the X-ray crystal structure of 2 and the previously unknown absolute configuration of 8, assigned by ECD calculations, are described here for the first time. Compounds 1–5, 7 and 8 exhibited inhibition of lipopolysaccharide (LPS)-induced NF-κB in RAW 264.7 macrophages at 20 μM. In addition, the two potent inhibitors (2 and 7) dose-dependently suppressed RANKL-induced osteoclast differentiation without any evidence of cytotoxicity in bone marrow macrophages cells (BMMs). This is the first report of osteoclastogenesis inhibitory activity for the metabolites of these kinds. Besides, compounds 1, 2, 4, and 6–8 showed inhibitory activity against marine biofilm-forming bacteria, methicillin-resistant Staphylococcus aureus, Microbulbifer variabilis, Marinobacterium jannaschii, and Vibrio pelagius, with their MIC values ranging from 2 to 64 μg/mL. These findings provide a basis for further development of chlorinated polyketides as potential inhibitors of osteoclast differentiation and/or for use as anti-fouling agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.