Antibiotics are widely used in animal husbandry, and various types of antibiotic resistance genes (ARGs) are frequently detected in livestock waste around the world. Conventional livestock waste treatment processes do not completely remove ARGs, resulting in their release to soil and water environments. Various exposure routes of these ARGs to humans, including inhalation and ingestion of antibiotic-resistant bacteria (ARB) that harbor them, may be contributing to the rise in resistant clinical infections that are increasingly difficult to treat with antibiotics. In this review, we assess the occurrence and variability of ARGs in livestock wastes and their potential propagation pathways to human pathogens. We also review the mechanisms and environmental factors that influence the dissemination of ARGs through these pathways, and evaluate the ARG removal efficiency of common livestock waste management approaches. Challenges and research needs for assessing and mitigating the risk of antibiotic resistance dissemination from livestock waste are also presented.
Type IV secretion systems mediate the translocation of virulence factors (proteins and/or DNA) from Gramnegative bacteria into eukaryotic cells. A complex of 11 conserved proteins (VirB1-VirB11) spans the inner and the outer membrane and assembles extracellular T-pili in Agrobacterium tumefaciens. Here we report a sequence of protein interactions required for the formation of complexes between VirB2 and VirB5, which precedes their incorporation into pili. The NTPase Walker A active site of the inner membrane protein VirB4 is required for virulence, but an active site VirB4 variant stabilized VirB3 and VirB8 and enabled T-pilus formation. Analysis of VirB protein complexes extracted from the membranes with mild detergent revealed that VirB2-VirB5 complex formation depended on VirB4, which identified a novel T-pilus assembly step. Bicistron expression demonstrated direct interaction of VirB4 with VirB8, and analyses with purified proteins showed that VirB5 bound to VirB8 and VirB10. VirB4 therefore localizes at the basis of a trans-envelope interaction sequence, and by stabilization of VirB8 it mediates the incorporation of VirB5 and VirB2 into extracellular pili.
Mulberry (Morus alba L.) fruit has a high yield in one fruiting season in many countries, especially in Asia, and a long history of use as an edible fruit and traditional medicine. A great diversity of nutritive compounds such as fatty acids, amino acids, vitamins, minerals, and bioactive compounds, including anthocyanins, rutin, quercetin, chlorogenic acid, and polysaccharides have been found in mulberry fruit depending on the cultivars and maturity stages. Furthermore, the extracts and active components of mulberry fruit have demonstrated numerous biological activities, including antioxidant, neuroprotective, antiatherosclerosis, immunomodulative, antitumor, antihyperglycemic, and hypolipidemic activities in in vitro and in vivo studies, and they have received increasing interest from researchers and pharmaceutical companies. Although some mechanistic studies further substantiate these potential health benefits of mulberry fruit, a need exists to make a better understanding of the roles of these compounds in traditional medicine and the diet. This review provides recent findings regarding the chemical constituents and biological activities of mulberry fruit, which may be useful for stimulating deep research of mulberry fruit and for predicting their uses as important and safe contributors to benefit human health.
Growing attention has been paid to the dissemination of antibiotic resistance genes (ARGs) in wastewater microbial communities; however, the disinfection processes, as microbial control technologies, have not been evaluated for their impacts on ARGs transfer. In this study, the effects of ultraviolet (UV) disinfection and chlorination on the frequency of ARGs transfer have been explored based on the conjugative transfer model between Gram-negative strains of E. coli. The results indicated that UV disinfection and chlorination exhibit distinct influences on the conjugative transfer. Low UV doses (up to 8 mJ/cm2) had little influence on the frequency of conjugative transfer, and UV exposure only decreased the bacterial number but did not change the cell permeability. By comparison, low chlorine doses (up to 40 mg Cl min/L) significantly promoted the frequency of conjugative transfer by 2-5-fold. The generated chloramine stimulated the bacteria and improved the cell permeability. More pilus were induced on the surface of conjugative cells, which acted as pathways for ARGs transfer. The frequency of ARG transfers was greatly suppressed by high doses of UV (>10 mJ/cm2) or chlorine (>80 mg Cl min/L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.