Summary Eukaryotic cells make many types of primary and processed RNAs that are found either in specific sub-cellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic sub-cellular localizations are also poorly understood. Since RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell’s regulatory capabilities are focused on its synthesis, processing, transport, modifications and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations taken together prompt to a redefinition of the concept of a gene.
Summary The RNA-binding proteins Rbfox1/2/3 regulate alternative splicing in the nervous system, and disruption of Rbfox1 has been implicated in autism. However, comprehensive identification of functional Rbfox targets has been challenging. Here we performed HITS-CLIP for all three Rbfox family members to globally map, at a single-nucleotide resolution, their in vivo RNA interaction sites in the mouse brain. We found that the two guanines in the Rbfox-binding motif UGCAUG are critical for protein-RNA interactions and crosslinking. Using integrative modeling, these interaction sites combined with additional datasets defined 1,059 direct Rbfox target alternative splicing events. Over half of the quantifiable targets show dynamic changes during brain development. Of particular interest are 111 events from 48 candidate autism-susceptibility genes, including syndromic autism genes Shank3, Cacna1c, and Tsc2. Alteration of Rbfox targets in some autistic brains is correlated with down-regulation of all three Rbfox proteins, supporting the potential clinical relevance of the splicing- regulatory network.
BackgroundMicroRNAs (miRNAs) are a group of short (~22 nt) non-coding RNAs that play important regulatory roles. MiRNA precursors (pre-miRNAs) are characterized by their hairpin structures. However, a large amount of similar hairpins can be folded in many genomes. Almost all current methods for computational prediction of miRNAs use comparative genomic approaches to identify putative pre-miRNAs from candidate hairpins. Ab initio method for distinguishing pre-miRNAs from sequence segments with pre-miRNA-like hairpin structures is lacking. Being able to classify real vs. pseudo pre-miRNAs is important both for understanding of the nature of miRNAs and for developing ab initio prediction methods that can discovery new miRNAs without known homology.ResultsA set of novel features of local contiguous structure-sequence information is proposed for distinguishing the hairpins of real pre-miRNAs and pseudo pre-miRNAs. Support vector machine (SVM) is applied on these features to classify real vs. pseudo pre-miRNAs, achieving about 90% accuracy on human data. Remarkably, the SVM classifier built on human data can correctly identify up to 90% of the pre-miRNAs from other species, including plants and virus, without utilizing any comparative genomics information.ConclusionThe local structure-sequence features reflect discriminative and conserved characteristics of miRNAs, and the successful ab initio classification of real and pseudo pre-miRNAs opens a new approach for discovering new miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.