The molecular structure of the electrical double layer determines the chemistry in all electrochemical processes. Using x-ray absorption spectroscopy (XAS), we probed the structure of water near gold electrodes and its bias dependence. Electron yield XAS detected at the gold electrode revealed that the interfacial water molecules have a different structure from those in the bulk. First principles calculations revealed that ~50% of the molecules lie flat on the surface with saturated hydrogen bonds and another substantial fraction with broken hydrogen bonds that do not contribute to the XAS spectrum because their core-excited states are delocalized by coupling with the gold substrate. At negative bias, the population of flat-lying molecules with broken hydrogen bonds increases, producing a spectrum similar to that of bulk water.
Prussian blue and its analogues have received particular attention as superior cathodes for Na-ion batteries due to their potential 2-Na storage capacity (∼170 mAh g(-1)) and low cost. However, most of the Prussian blue compounds obtained from the conventional synthetic routes contain large amounts of Fe(CN)6 vacancies and coordinated water molecules, which leads to the collapse of cyano-bridged framework and serious deterioration of their Na-storage ability. Herein, we propose a facile citrate-assisted controlled crystallization method to obtain low-defect Prussian blue lattice with greatly improved Na-storage capacity and cycling stability. As an example, the as-prepared Na2CoFe(CN)6 nanocrystals demonstrate a reversible 2-Na storage reaction with a high specific capacity of 150 mAh g(-1) and a ∼ 90% capacity retention over 200 cycles, possibly serving as a low cost and high performance cathode for Na-ion batteries. In particular, the synthetic strategy described in this work may be extended to other coordination-framework materials for a wide range of energy conversion and storage applications.
The (111) surface of copper (Cu), its most compact and lowest energy surface, became unstable when exposed to carbon monoxide (CO) gas. Scanning tunneling microscopy revealed that at room temperature in the pressure range 0.1 to 100 Torr, the surface decomposed into clusters decorated by CO molecules attached to edge atoms. Between 0.2 and a few Torr CO, the clusters became mobile in the scale of minutes. Density functional theory showed that the energy gain from CO binding to low-coordinated Cu atoms and the weakening of binding of Cu to neighboring atoms help drive this process. Particularly for softer metals, the optimal balance of these two effects occurs near reaction conditions. Cluster formation activated the surface for water dissociation, an important step in the water-gas shift reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.