Meteorological satellites are usually operated at high temporal resolutions, but the spatial resolutions are too poor to identify ground content. Super-resolution is an economic way to enhance spatial details, but the feasibility is not validated for meteorological images due to the absence of benchmarking data. In this work, we propose the FY4ASRgray and FY4ASRcolor datasets to assess super-resolution algorithms on meteorological applications. The features of cloud sensitivity and temporal continuity are linked to the proposed datasets. To test the usability of the new datasets, five state-of-the-art super-resolution algorithms are gathered for contest. Shift learning is used to shorten the training time and improve the parameters. Methods are modified to deal with the 16-bit challenge. The reconstruction results are demonstrated and evaluated regarding the radiometric, structural, and spectral loss, which gives the baseline performance for detail enhancement of the FY4A satellite images. Additional experiments are made on FY4ASRcolor for sequence super-resolution, spatiotemporal fusion, and generalization test for further performance test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.