Fatty liver haemorrhagic syndrome (FLHS) is a widespread metabolic disease in laying hens that causes a decrease in egg production and even death. Insulin resistance is a major contributor to the pathogenesis of nonalcoholic fatty liver disease. However, the relationship between FLHS and the insulin resistance mechanisms underlying FLHS is not well elucidated. Therefore, we established an FLHS model induced by feeding a high-energy low-protein diet. In the current study, we found that the fasting glucose and insulin concentrations were elevated in the FLHS group compared with the control group during the experimental period. The results of the oral glucose tolerance test (OGTT) and insulin sensitivity test (IST) showed a high level of insulin resistance in the FLHS model. InsR, 4EBP-1, Glut-1 and Glut-3 mRNA expression were decreased, and TOR, S6K1, and FOXO1 were elevated (
P
<
0.05
). Metabolomic analysis with GC/MS identified 46 differentially expressed metabolites between these two groups, and of these, 14 kinds of metabolism molecules and 32 kinds of small metabolism molecules were decreased (
P
<
0.05
). Further investigation showed that glucose, lipid and amino acid metabolism blocks in the progression of FLHS by GO functional and pathway analysis. Overall, these results suggest that insulin resistance participated in FLHS; comprehensively, metabolites participated in the dysregulated biological process.
The aim of the present study was to investigate the effects of high doses of copper (Cu) and mercury (Hg) on the cecal microbiota in female mice. Forty-eight Kunming mice were randomly divided into the control group (CCk group), the Cu group (CCu group), the Hg group (CHg group), and the Cu + Hg group (CCH group). At the 90th day, cecal tissues were prepared for histopathological analysis and cecal contents for analysis by 16S rRNA sequencing method. Cecal tissues from treatment groups had histopathological lesions including increased thickness of inner muscularis and outer muscularis, widened submucosa, decreased goblet cells, mild to moderate necrosis of enterocytes, blunting of intestinal villi, and severe atrophy of central lacteal. Furthermore, compared to the CCk group, the abundance of bacteria genera Rikenella, Jeotgailcoccus, and Staphylococcus were significantly decreased, whereas the bacteria genus Corynebacterium was significantly increased in the CCu group. The abundance of bacteria genera of Sporosarcina, Jeotgailcoccus, and Staphylococcus were significantly decreased in the CHg group and CCH group. The bacteria genus Anaeroplasma was significantly increased in the CCH group. The results indicated that high doses of Cu and Hg caused histopathological lesions and changed the diversity of microbiota in the cecum of female mice, which provide a theoretical basis for more accurate assessment of the risk in intestinal diseases caused by Cu and Hg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.