For the multi-target DOA estimation problem of uniform linear arrays, this paper proposes a DOA estimation method based on the deep convolution neural network. The algorithm adopts the deep convolutional neural network, and the DOA estimation problem of the array signal is transformed into the inverse mapping problem of the array output covariance matrix to a binary sequence in which “1” indicates that there is a target incident in the corresponding angular direction at that position. The upper triangular array of the discrete covariance matrix is used as the data input to realize the DOA estimation of multiple sources. The simulation results show that the DOA estimation accuracy of the proposed algorithm is significantly better than that of the typical super-resolution estimation algorithm under the conditions of low SNR and small snapshot. Under the conditions of high SNR and large snapshot, the estimation accuracy of the proposed algorithm is basically the same as those of the MUSIC algorithm, ESPRIT algorithm, and ML algorithm, which are better than that of the deep fully connected neural network. The analysis of the simulation results shows that the algorithm is effective, and the time and space complexity can be further reduced by replacing the square array with the upper triangular array as the input.
Aiming at low degrees of freedom (DOF) and high mutual coupling (MC) of the existing sparse arrays, an enhanced generalized nested array (EGNA) is proposed in this paper. Specifically, the proposed array adds a single antenna on the basis of generalized nested array (GNA), and the difference of coprime factors is employed as the spacing between the second subarray and the additional antenna. Then, the values of the coprime factors are analyzed in detail, which indicates that Yang-NA can be explained as a special case. Compared with the majority of the existing sparse arrays, EGNA not only has the closed-form expressions of the physical antenna locations, consecutive lags, and unique lags, but also significantly increases DOF and reduces MC. In view of the above advantages, EGNA can obtain superior performance in direction of arrival (DOA) estimation. Numerical simulation results verify the rationality and superiority of the proposed nested array.
In this paper, we initiated a method to estimate the direction of arrival (DOA) of far-field, narrowband, and incoherent targets using coprime array. First, we proposed a coprime array structure and analysed the distribution of difference coarray (DCA). The degrees of freedom (DOF) of the proposed coprime array became clearer by referring to the DCA conception. However, previous algorithm only uses the continuous virtual array, which causes the virtual array elements in the repeated position being abandoned. Therefore, the paper analyses the distribution of virtual array based on DCA conception and averages the receiving signal on these redundant virtual array elements to increase the utilization of receiving data. As a result, the algorithm has high precision in parameter estimation. Simulation results have shown the superiority of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.