The number of pro-α cells is known to increase in response to β cell injury and these cells then generate glucagon-like peptide-1 (GLP-1), thus attenuating the development of diabetes. The aim of the present study was to further examine the role and the mechanisms responsible for intra-islet GLP-1 production as a self-protective response against lipotoxicity. The levels of the key enzyme, prohormone convertase 1/3 (PC1/3), as well as the synthesis and release of GLP-1 in models of lipotoxicity were measured. Furthermore, islet viability, apoptosis, oxidative stress and inflammation, as well as islet structure were assessed after altering GLP-1 receptor signaling. Both prolonged exposure to palmitate and a high-fat diet facilitated PC1/3 expression, as well as the synthesis and release of GLP-1 induced by β cell injury and the generation of pro-α cells. Prolonged exposure to palmitate increased reactive oxygen species (ROS) production, and the antioxidant, N-acetylcysteine (NAC), partially prevented the detrimental effects induced by palmitate on β cells, resulting in decreased GLP-1 levels. Furthermore, the inhibition of GLP-1 receptor (GLP-1R) signaling by treatment with exendin-(9-39) further decreased cell viability, increased cell apoptosis and caused a stronger inhibition of the β cell-specific transcription factor, pancreatic duodenal homeobox 1 (PDX1). Moreover, treatment with the GLP-1R agonist, liraglutide, normalized islet structure and function, resulting in a decrease in cell death and in the amelioration of β cell marker expression. Importantly, liraglutide maintained the oxidative balance and decreased inflammatory factor and p65 expression. Overall, our data demonstrate that an increase in the number of pro-α cells and the activation of the intra-islet GLP-1 system comprise a self-defense mechanism for enhancing β cell survival to combat lipid overload, which is in part mediated by oxidative stress and inflammation.
Aims The aim was to systematically review the efficacy and safety of sodium–glucose cotransporter inhibitor (SGLT2i) as an adjunct to insulin at different follow-up durations in randomized, double-blind clinical trials in patients with type 1 diabetes. Methods We conducted a search on Medline, Embase, and the Cochrane Library for relevant studies published before May 2020. According to the duration of follow-up, the subgroup analysis included four periods: 1–4, 12–18, 24–26, and 52 weeks. In the five trials included both 24–26 and 52 weeks of follow-up, we compared the efficacy by the placebo-subtracted difference and changes in SGLT2i groups. Results Fifteen trials including 7109 participants were analyzed. The combination of SGLT2i and insulin improved hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), daily insulin dose, body weight, and blood pressure, which varied greatly by different follow-ups. Compared with %HbA1c at 24–26 weeks, placebo-subtracted differences and changes in the SGLT2i groups slightly increased. SGLT2i plus insulin treatment showed no difference in the occurrence of urinary tract infections (UTIs), hypoglycemia, or severe hypoglycemia but increased the risk of genital tract infections (GTIs) in a duration-dependent manner. SGLT2i treatment was associated with a significantly higher rate of ketone-related SAEs and diabetic ketoacidosis (DKA) at 52 weeks. Conclusion SGLT2i as an add-on therapy to insulin improved glycemic control and body weight and decreased the required dose of insulin without increasing the risk of hypoglycemia. However, after 6 months the benefits of SGLT2is on glycemic control may weaken and the risks of GTIs and DKA increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.