In order to solve the problem of hydrate reservoir collapse and hydrate regenerated in the process of solid fluidization of natural gas hydrate, a new method of natural gas hydrate exploit by high‐polymer additive (low viscosity carboxymethyl cellulose LV‐CMC) carbon dioxide jet was proposed. The wellbore temperature and pressure changes during this process are analyzed, and the wellbore temperature and pressure model are established and solved by the state space method. This paper also analyzed the effects of relevant parameters on hydrate decomposition, such as injection flow, temperature, and pressure. The results show that increasing the injection pressure allows the hydrate decomposition site to be closer to the annulus outlet. Compared with water, with polymer additive CO2 fluid as the drilling fluid, the intersection point of phase equilibrium curve and annular pressure curve is closer to annular outlet, which is obviously more conducive to well control. In order to avoid phase changes, the injection pressure of the carbon dioxide fluid of the high‐polymer additive should not be lower than 10 MPa, and the injection temperature should not be higher than 285 K.
The addition of a polymer to the jet medium enhances its ability to break rock, and the structure of the nozzle plays a vital role in the full utilization of energy. In this paper, a self-propelled porous jet bit with a support plate is designed, which can prevent the drill bit from jamming due to the jet nozzle against the bottom of the well during the drilling process. And the structural design of the cone-converging nozzle is applied to the forward center nozzle. The polymer additive jet flow field and the pure water jet flow field were compared by numerical simulation and experimental investigation. The results show that the polymer additive jet has a longer isokinetic core, and the rock-breaking volume of the polymer additive jet is much larger than that of the pure water jet, and the optimal spray distance is increased. The forward central jet with the conical convergent nozzle structure has more efficient rock-breaking ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.