Deep learning-based image dehazing methods have made great progress, but there are still many problems such as inaccurate model parameter estimation and preserving spatial information in the U-Net-based architecture. To address these problems, we propose an image dehazing network based on the high-resolution network, called DeHRNet. The high-resolution network originally used for human pose estimation. In this paper, we make a simple yet effective modification to the network and apply it to image dehazing. We add a new stage to the original network to make it better for image dehazing. The newly added stage collects the feature map representations of all branches of the network by up-sampling to enhance the high-resolution representations instead of only taking the feature maps of the high-resolution branches, which makes the restored clean images more natural. The final experimental results show that DeHRNet achieves superior performance over existing dehazing methods in synthesized and natural hazy images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.