The production of potentially pathogenic anti-DNA autoantibodies in SLE is driven by special, autoimmune T helper (Th) cells. Herein, we sequenced the T cell receptor (TCR) a and P chain genes expressed by 42 autoimmune Th lines from lupus patients that were mostly CD4+ and represented the strongest inducers of such autoantibodies. These autoinmune TCRs displayed a recurrent motif of highly charged residues in their CDR3 loops that were contributed by Nnucleotide additions and also positioned there by the recombination process. Furthermore, Th lines from four of the five patients showed a marked increase in the usage of the Va8 gene family. Several independent Th lines expressed identical TCR a and/or ,B chain sequences indicating again antigenic selection. 10 of these Th lines could be tested further for antigenic specificity. 4 of the 10 pathogenic anti-DNA autoantibody-inducing Th lines responded to the nonhistone chromosomal protein HMG and two responded to nucleosomal histone proteins; all presented by HLA-DR molecules. Another Th line responded to purified DNA more than nucleosomes. Thus, these autoimmune Th cells of lupus patients respond to charged epitopes in various DNA-binding nucleoproteins that are probably processed and presented by the anti-DNA B cells they selectively help. (J. Clin. Invest. 1995. 95:531-541.)
Recurrent estrogen receptor α (ERα)-positive breast and ovarian cancers are often therapy resistant. Using screening and functional validation, we identified BHPI, a potent noncompetitive small molecule ERα biomodulator that selectively blocks proliferation of drug-resistant ERα-positive breast and ovarian cancer cells. In a mouse xenograft model of breast cancer, BHPI induced rapid and substantial tumor regression. Whereas BHPI potently inhibits nuclear estrogen-ERα-regulated gene expression, BHPI is effective because it elicits sustained ERα-dependent activation of the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), and persistent inhibition of protein synthesis. BHPI distorts a newly described action of estrogen-ERα: mild and transient UPR activation. In contrast, BHPI elicits massive and sustained UPR activation, converting the UPR from protective to toxic. In ERα + cancer cells, BHPI rapidly hyperactivates plasma membrane PLCγ, generating inositol 1,4,5-triphosphate (IP 3 ), which opens EnR IP 3 R calcium channels, rapidly depleting EnR Ca 2+ stores. This leads to activation of all three arms of the UPR. Activation of the PERK arm stimulates phosphorylation of eukaryotic initiation factor 2α (eIF2α), resulting in rapid inhibition of protein synthesis. The cell attempts to restore EnR Ca 2+ levels, but the open EnR IP 3 R calcium channel leads to an ATP-depleting futile cycle, resulting in activation of the energy sensor AMP-activated protein kinase and phosphorylation of eukaryotic elongation factor 2 (eEF2). eEF2 phosphorylation inhibits protein synthesis at a second site. BHPI's novel mode of action, high potency, and effectiveness in therapyresistant tumor cells make it an exceptional candidate for further mechanistic and therapeutic exploration.estrogen receptor | drug discovery | breast cancer | unfolded protein response | ovarian cancer E strogens, acting via estrogen receptor α (ERα), stimulate tumor growth (1-3). Approximately 70% of breast cancers are ERα-positive and most deaths due to breast cancer are in patients with ERα + tumors (2, 4). Endocrine therapy using aromatase inhibitors to block estrogen production, or tamoxifen and other competitor antiestrogens, often results in selection and outgrowth of resistant tumors. Although 30-70% of epithelial ovarian tumors are ERα-positive (1), endocrine therapy is largely ineffective (5-7). After several cycles of chemotherapy, tumors recur as resistant ovarian cancer (5), and most patients die within 5 years (8).Noncompetitive ERα inhibitors targeting this unmet therapeutic need, including DIBA, TPBM, TPSF, and LRH-1 inhibitors that reduce ERα levels, show limited specificity, require high concentrations (>5 μM), and usually have not advanced through preclinical development (9-12). These noncompetitive ERα inhibitors and competitor antiestrogens are primarily cytostatic and act by preventing estrogen-ERα action; therefore, they are largely ineffective in therapy-resistant ERα containing cancer cells that no longer requi...
Cyclin-dependent kinase 6 (CDK6) promotes cell cycle progression and is overexpressed in human lymphoid malignancies. To determine the role of CDK6 in development and tumorigenesis, we generated and analyzed knockout mice. Cdk6-deficient mice show pronounced thymic atrophy due to reduced proliferative fractions and concomitant transitional blocks in the double-negative stages. Using the OP9-DL1 system to deliver temporally controlled Notch receptordependent signaling, we show that CDK6 is required for Notch-dependent survival, proliferation, and differentiation. Furthermore, CDK6-deficient mice were resistant to lymphomagenesis induced by active Akt, a downstream target of Notch signaling. These results show a critical requirement for CDK6 in Notch/Akt-dependent T-cell development and tumorigenesis and strongly support CDK6 as a specific therapeutic target in human lymphoid malignancies. [Cancer Res 2009; 69(3):810-8]
Pre-TCR signals regulate the transition of the double-negative (DN) 3 thymocytes to the DN4, and subsequently to the double-positive (DP) stage. In this study, we show that pre-TCR signals activate Akt and that pharmacological inhibition of the PI3K/Akt pathway, or combined ablation of Akt1 and Akt2, and to a lesser extent Akt1 and Akt3, interfere with the differentiation of DN3 and the accumulation of DP thymocytes. Combined ablation of Akt1 and Akt2 inhibits the proliferation of DN4 cells, while combined ablation of all Akt isoforms also inhibits the survival of all the DN thymocytes. Finally, the combined ablation of Akt1 and Akt2 inhibits the survival of DP thymocytes. Constitutively active Lck-Akt1 transgenes had the opposite effects. We conclude that, following their activation by pre-TCR signals, Akt1, Akt2, and, to a lesser extent, Akt3 promote the transition of DN thymocytes to the DP stage, in part by enhancing the proliferation and survival of cells undergoing β-selection. Akt1 and Akt2 also contribute to the differentiation process by promoting the survival of the DP thymocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.