Background: Parkinson's disease (PD) is a common, degenerative disease of the nervous system that is characterized by the death of dopaminergic neurons in the substantia nigra densa (SNpc). There is growing evidence that copper (Cu) is involved in myelin formation and is involved in cell death through modulation of synaptic activity as well as neurotrophic factor-induced excitotoxicity.Methods: This study aimed to explore potential cuproptosis-related genes (CRGs) and immune infiltration patterns in PD and the development of Cu chelators relevant for PD treatment. The PD datasets GSE7621, GSE20141, and GSE49036 were downloaded from the Gene Expression Omnibus (GEO) database. The consensus clustering method was used to classify the specimens of PD. Using weighted gene co-expression network analysis (WGCNA) and random forest (RF) tree model, support vector machine (SVM) learning model, extreme gradient boosting (XGBoost) model, and general linear model (GLM) algorithms to screen disease progression-related models, the column charts were created to verify the accuracy of these CRGs in predicting PD progression. Single sample genomic enrichment analysis (ssGSEA) was used to estimate the correlation between genes associated with copper poisoning and genes associated with immune cells and immune function. Molecular docking was used to verify interactions with copper chelating agents associated with cuproptosis for PD treatment.Results: Through ssGSEA, we identified three copper poisoning related genes ATP7A, NFE2L2 and MTF1, which are related to immune cells in PD. We also verified that LAGASCATRIOL can bind to NFE2L2 through molecular docking. Consistent cluster analysis identified two subtypes, among which C2 subtype was just enriched in PD. And to more accurately diagnose PD progression, patients can benefit from a feature map based on these genes.Conclusions: CRGs such as NFE2L2, MTF1, and ATP7B were identified to be associated with the pathogenesis of PD and provide a possible new direction for the treatment of PD, which needs further indepth study.
BackgroundGliomas are the most common intracranial nervous system tumours that are highly malignant and aggressive, and mitochondria are an important marker of metabolic reprogramming of tumour cells, the prognosis of which cannot be accurately predicted by current histopathology. Therefore, Identify a mitochondrial gene with immune-related features that could be used to predict the prognosis of glioma patients.MethodsGliomas data were downloaded from the TCGA database and mitochondrial-associated genes were obtained from the MITOCARTA 3.0 dataset. The CGGA, kamoun and gravendeel databases were used as external datasets. LASSO(Least absolute shrinkage and selection operator) regression was applied to identify prognostic features, and area and nomograms under the ROC(Receiver Operating Characteristic) curve were used to assess the robustness of the model. Single sample genomic enrichment analysis (ssGSEA) was employed to explore the relationship between model genes and immune infiltration, and drug sensitivity was used to identify targeting drugs. Cellular studies were then performed to demonstrate drug killing against tumours.ResultsCOX assembly mitochondrial protein homolog (CMC1), Cytochrome c oxidase protein 20 homolog (COX20) and Cytochrome b-c1 complex subunit 7 (UQCRB) were identified as prognostic key genes in glioma, with UQCRB, CMC1 progressively increasing and COX20 progressively decreasing with decreasing risk scores. ROC curve analysis of the TCGA training set model yielded AUC (Area Under The Curve) values >0.8 for 1-, 2- and 3-year survival, and the model was associated with both CD8+ T cells and immune checkpoints. Finally, using cellMiner database and molecular docking, it was confirmed that UQCRB binds covalently to Amonafide via lysine at position 78 and threonine at position 82, while cellular assays showed that Amonafide inhibits glioma migration and invasion.ConclusionOur three mitochondrial genomic composition-related features accurately predict Survival in glioma patients, and we also provide glioma chemotherapeutic agents that may be mitochondria-related targets.
Background Adamantinoma craniopharyngioma (ACP) is a non-malignant tumour of unknown pathogenesis that frequently occurs in children and has malignant potential. The main treatment options are currently surgical resection and radiotherapy. These treatments can lead to serious complications that greatly affect the overall survival and quality of life of patients. It is therefore important to use bioinformatics to explore the mechanisms of ACP development and progression and to identify new molecules. Methods Sequencing data of ACP was downloaded from the comprehensive gene expression database for differentially expressed gene identification and visualized by Gene Ontology, Kyoto Gene, and gene set enrichment analyses (GSEAs). Weighted correlation network analysis was used to identify the genes most strongly associated with ACP. GSE94349 was used as the training set and five diagnostic markers were screened using machine learning algorithms to assess diagnostic accuracy using receiver operating characteristic (ROC) curves, while GSE68015 was used as the validation set for verification. Results Type I cytoskeletal 15 (KRT15), Follicular dendritic cell secreted peptide (FDCSP), Rho-related GTP-binding protein RhoC (RHOC), Modulates negatively TGFB1 signaling in keratinocytes (CD109), and type II cytoskeletal 6A (KRT6A) (area under their receiver operating characteristic curves is 1 for both the training and validation sets), Nomograms constructed using these five markers can predict progression of ACP patients. Whereas ACP tissues with activated T-cell surface glycoprotein CD4, Gamma delta T cells, eosinophils and regulatory T cells were expressed at higher levels than in normal tissues, which may contribute to the pathogenesis of ACP. According to the analysis of the CellMiner database (Tumor cell and drug related database tools), high CD109 levels showed significant drug sensitivity to Dexrazoxane, which has the potential to be a therapeutic agent for ACP. Conclusions Our findings extend understandings of the molecular immune mechanisms of ACP and suggest possible biomarkers for the targeted and precise treatment of ACP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.