Many hostile scenarios exist in real-life situations, where cooperation is disfavored and the collective behavior needs intervention for system efficiency improvement. Towards this end, the framework of soft control provides a powerful tool by introducing controllable agents called shills, who are allowed to follow well-designed updating rules for varying missions. Inspired by swarm intelligence emerging from flocks of birds, we explore here the dependence of the evolution of cooperation on soft control by an evolutionary iterated prisoner's dilemma (IPD) game staged on square lattices, where the shills adopt a particle swarm optimization (PSO) mechanism for strategy updating. We demonstrate that not only can cooperation be promoted by shills effectively seeking for potentially better strategies and spreading them to others, but also the frequency of cooperation could be arbitrarily controlled by choosing appropriate parameter settings. Moreover, we show that adding more shills does not contribute to further cooperation promotion, while assigning higher weights to the collective knowledge for strategy updating proves a efficient way to induce cooperative behavior. Our research provides insights into cooperation evolution in the presence of PSO-inspired shills and we hope it will be inspirational for future studies focusing on swarm intelligence based soft control.
Synchrotron light sources, arguably among the most powerful tools of modern scientific discov-9 ery, are presently undergoing a major transformation to provide orders of magnitude higher brightness and transverse coherence enabling the most demanding experiments. In these experiments, overall source stability will soon be limited by achievable levels of electron beam size stability, presently on the order of several microns, which is still 1-2 orders of magnitude larger than already demonstrated stability of source position and current. Until now source size stabilization has been achieved through corrections based on a combination of static predetermined physics models and lengthy calibration measurements, periodically repeated to counteract drift in the accelerator and instrumentation. We now demonstrate for the first time how application of machine learning allows for a physics-and model-independent stabilization of source size relying only on previously existing instrumentation. Such feed-forward correction based on a neural network that can be continuously online-retrained achieves source size stability as low as 0.2 µm (0.4%) rms which results in overall source stability approaching the sub-percent noise floor of the most sensitive experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.