Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.
Tumor neovascularization is a highly complex process including multiple steps. Understanding this process, especially the initial stage, has been limited by the difficulties of real-time visualizing the neovascularization embedded in tumor tissues in living animal models. In the present study, we have established a xenograft model in zebrafish by implanting mammalian tumor cells into the perivitelline space of 48 hours old Tg(Flk1:EGFP) transgenic zebrafish embryos. With this model, we dynamically visualized the process of tumor neovascularization, with unprecedented high-resolution, including new sprouts from the host vessels and the origination from VEGFR2+ individual endothelial cells. Moreover, we quantified their contributions during the formation of vascular network in tumor. Real-time observations revealed that angiogenic sprouts in tumors preferred to connect each other to form endothelial loops, and more and more endothelial loops accumulated into the irregular and chaotic vascular network. The over-expression of VEGF165 in tumor cells significantly affected the vascularization in xenografts, not only the number and size of neo-vessels but the abnormalities of tumor vascular architecture. The specific inhibitor of VEGFR2, SU5416, significantly inhibited the vascularization and the growth of melanoma xenografts, but had little affects to normal vessels in zebrafish. Thus, this zebrafish/tumor xenograft model not only provides a unique window to investigate the earliest events of tumoral neoangiogenesis, but is sensitive to be used as an experimental platform to rapidly and visually evaluate functions of angiogenic-related genes. Finally, it also offers an efficient and cost-effective means for the rapid evaluation of anti-angiogenic chemicals.
Purpose: VEGF receptor 2 (VEGFR2) inhibitors, as efficient antiangiogenesis agents, have been applied in the cancer treatment. However, currently most of these anticancer drugs suffer some adverse effects. Discovery of novel VEGFR2 inhibitors as anticancer drug candidates is still needed. Experimental Design: In this investigation, we adopted a restricted de novo design method to design VEGFR2 inhibitors. We selected the most potent compound SKLB1002 and analyzed its inhibitory effects on human umbilical vein endothelial cells (HUVEC) in vitro. Tumor xenografts in zebrafish and athymic mice were used to examine the in vivo activity of SKLB1002. Results: The use of the restricted de novo design method indeed led to a new potent VEGFR2 inhibitor, SKLB1002, which could significantly inhibit HUVEC proliferation, migration, invasion, and tube formation. Western blot analysis was conducted, which indicated that SKLB1002 inhibited VEGF-induced phosphorylation of VEGFR2 kinase and the downstream protein kinases including extracellular signal-regulated kinase, focal adhesion kinase, and Src. In vivo zebrafish model experiments showed that SKLB1002 remarkably blocked the formation of intersegmental vessels in zebrafish embryos. It was further found to inhibit a new microvasculature in zebrafish embryos induced by inoculated tumor cells. Finally, compared with the solvent control, administration of 100 mg/kg/d SKLB1002 reached more than 60% inhibition against human tumor xenografts in athymic mice. The antiangiogenic effect was indicated by CD31 immunohistochemical staining and alginate-encapsulated tumor cell assay. Conclusions: Our findings suggest that SKLB1002 inhibits angiogenesis and may be a potential drug candidate in anticancer therapy. Clin Cancer Res; 17(13); 4439–50. ©2011 AACR.
Primary tumors and metastases have been thought to initiate avascularly as multicellular aggregates and later induce angiogenesis or initiate vascularly by co-opting pre-existing host blood vessels without inducing angiogenesis. These two distinct concepts of microtumor vascularization have raised significant controversies. To clarify intratumoral vascularization and tumor cell behaviors at single-cell level during the earliest stage of microtumor initiation, we established primary and metastatic microtumor models in Tg(flk1:EGFP) transgenic zebrafish. We found that tumor cells preferred to initiate avascularly as multicellular aggregates and only later (50-100 cells in size) induced angiogenesis in blood-supply-sufficient microenvironments. In blood-supply-deficient microenvironments, less tumor cells (20-30 cells per fish) managed to co-opt and migrate along host vessels, whereas more tumor cells (100-300 cells per fish) could immediately induce angiogenesis without obvious cell migration. In a metastatic model, we clearly observed that tumor cells co-opted, migrated along and proliferated on the surface of host vessels at an early stage after they extravasated from host vessels and induced angiogenesis later when micromatastases comprised only 15-30 tumor cells. Moreover, the inducement of neovessels accelerated the growth of micromatastases in size, meanwhile, decreased the migration of tumor cells on the surface of host vessels. These results suggest that vessel co-option and angiogenesis have distinct contributions during the initiation of microtumors. Microtumors initiated reasonably through co-opting host vessels or inducing angiogenesis, depending on the differences of local microenvironments and cell numbers in microtumors. The results in this study may have important implications for the therapeutic application of antiangiogenic strategies.
Etv2, a master regulator of endothelial cell fate, can induce fast skeletal muscle cells to transdifferentiate into endothelial cells in the zebrafish embryo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.