Improving the hydrophilicity of the poly(vinylidene fluoride) (PVDF) ultrafiltration membrane can change its adsorption fouling characteristics. Here, a novel amphiphilic material of PVDF grafted with N-methylolacrylamide (PVDF-g-NMA) was developed via photoinduced Cu(II)-mediated reversible deactivation radical polymerization (RDRP). The PVDF-g-NMA ultrafiltration membrane was prepared by the nonsolventinduced phase-separation method. The PVDF-g-NMA copolymer was characterized by 1 H NMR and Fourier transform infrared spectroscopy. The performance of the PVDF-g-NMA membrane was evaluated by determining the permeation flux, contact angle, roughness, and antifouling tests. The roughness data show that a low content of N-methylolacrylamide can effectively reduce the surface roughness of membranes by 50%, resulting in greater antifouling ability. The prepared ultrafiltration membrane containing 15 wt % PVDF-g-NMA exhibited the best hydrophilicity with an average pure water flux of up to 272.1 L•m −2 •h −1 , higher than that of the pure PVDF membrane (45.4 L•m −2 •h −1 ). The contact angle of the PVDF-g-NMA ultrafiltration membrane decreased from 85.5 to 67.4°. The bovine serum albumin rejection rate of the PVDF-g-NMA membrane significantly increased from 85.7 to 92.6%, and the pure water flux recovery rate increased from 79.0 to 88.5%. The PVDF-g-NMA ultrafiltration membrane had excellent hydrophilicity and antifouling properties, which would be promising for wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.