The past decade has witnessed the rapid development of cloud computing and data-centric applications. While these innovations offer numerous attractive features for data processing, they also bring in new issues about the loss of data ownership. Though some encrypted databases have emerged recently, they can not fully address these concerns for the data owner. In this paper, we propose an ownership-preserving database (OPDB), a new paradigm that characterizes different roles' responsibilities from nowadays applications and preserves data ownership throughout the entire application. We build Operon to follow the OPDB paradigm, which utilizes the trusted execution environment (TEE) and introduces a behavior control list (BCL). Different from access controls that merely handle accessibility permissions, BCL further makes data operation behaviors under control. Besides, we make Operon practical for real-world applications, by extending database capabilities towards flexibility, functionality and ease of use. Operon is the first database framework with which the data owner exclusively controls its data across different roles' subsystems. We have successfully integrated Operon with different TEEs, i.e. , Intel SGX and an FPGA-based implementation, and various database services on Alibaba Cloud, i.e. , PolarDB and RDS PostgreSQL. The evaluation shows that Operon achieves 71% - 97% of the performance of plaintext databases under the TPC-C benchmark while preserving the data ownership.
In-memory databases (IMDBs) have been the backbone of modern systems that demand high throughput and low latency. Because of the cost and volatility of DRAM, IMDBs become incompetent when dealing with workloads that require large data volume and strict durability. The emergence of non-volatile memory (NVM) brings new opportunities for IMDBs to tackle this situation. However, it is non-trivial to build an NVM-based IMDB, due to performance degradation, NVM programming complexity, and other challenges. In this paper, we present Tair-PMem , an NVM-based enterprise-strength database atop Redis, the most popular IMDB. Tair-PMem adopts a well-controlled data layout and a log-as-user-data design to mitigate NVM overheads. It eases the NVM programming complexity by providing a hybrid memory programming toolkit. To better leverage the enterprise-strength features and implementations from Redis, Tair-PMem retrofits it in a less intrusive way to achieve full compatibility and stability, while retaining its advanced features. With all of the above techniques elaborately implemented, Tair-PMem satisfies full durability, high throughput, and low latency at the same time. Tair-PMem has now been publicly available as a cloud service on Alibaba Cloud. To the best of our knowledge, Tair-PMem is the first cloud service that makes good use of the persistence capability of NVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.