In this study, an inexpensive catalyst (Fe–Zn/Al2O3) was investigated to efficiently convert alkaline lignin into phenolic monomers with formic acid at low temperatures. The catalyst was successfully prepared by a co-impregnation method and showed high selectivity for production of phenolic monomers. With the optimal reaction condition, i.e., a mass ratio of formic acid to lignin of 4:1 and a reaction temperature of 180 °C for 6 h, the highest yield of bio-oil of 28.31 wt % was obtained with formic acid as the in situ hydrogen source in the presence of Fe–Zn/Al2O3 catalyst. It was indicated from the composition analysis of bio-oil that the main phenolic monomers were 2-methoxy-phenol (2.86 wt %, based on alkaline lignin), vanillin (2.83 wt %, based on alkaline lignin), and apocynin (2.06 wt %, based on alkaline lignin). Compared with fresh catalyst, the spent one was also investigated for physical and chemical properties, and results confirmed by SEM (scanning electron microscopy) and TG/DTG (thermogravimetry/derivate thermogravimetry) analyses showed that solid products formed by lignin depolymerization were adsorbed on the surface of the Fe–Zn/Al2O3 catalyst. Finally, recyclability tests demonstrated that the catalytic performance of Fe–Zn/Al2O3 was still active and stable after five consecutive recycling runs.
In order to improve the thermal property of epoxy resin (EP), a lignin-based flame retardant was prepared. Focusing on the lignin-based flame retardant, this paper investigates its pyrolysis behavior and kinetics via a thermogravimetric analyzer coupled with Fourier transform infrared spectrometry (TG–FTIR). Based on the FTIR result, which showed a peak at 1222 cm−1, it was assigned a syringyl structure. Its absorption peak intensity was enhanced and this meant that the phenolization of the lignin was successful. Thermogravimetry/derivative thermogravimetry (TG/DTG) results showed that the carbon residues of F-lignin and F-lignin@APP were reduced to 33.5% and 37.5%, respectively. In addition, the maximum decomposition rate of F-lignin@APP20/EP is 11.8%/min, which is 8%/min and 4.7%/min lower than for EP and Al-lignin, respectively. The char residue of F-lignin@APP20/EP is 32.5%, which is much higher than for EP. Lower decomposition rate and higher char residue indicate the improvement of thermal stability of EP by F-lignin@APP. Moreover, the kinetics of Al-lignin20/EP and F-lignin@APP20/EP were conducted by two kinetic methods: Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS). It was concluded that the pyrolysis process of Al-lignin 20/EP and F-lignin@APP 20/EP could be divided into three stages, while the value and growth rate of the activation energy of F-lignin@APP 20/EP were much higher than that of Al-lignin 20/EP in stage III.
In this paper, liquefaction of sodium lignosulfonate (SL) over SO42−/TiO2 catalyst in methanol/glycerol was investigated. Effects of temperature, time, the ratio of methanol to glycerol and catalyst dosage were also studied. It was indicated that optimal reaction condition (the temperature of 160 °C, the time of 1 h, solvent ratio (methanol/glycerol) of 2:1, catalyst dosage of 5 wt % (based on lignin input)) was obtained after sets of experiments. The maximum yields of liquefaction (89.8%) and bio-oil (86.8%) were gained under the optimal reaction conditions. Bio-oil was analyzed by elemental analysis, FT-IR and gas chromatogram and mass spectrometry (GC/MS). It was shown that the functional groups of bio-oil were enriched and calorific value of bio-oil was increased. Finally, it can be seen from GC/MS analysis that the type of products included alcohols, ethers, phenols, ketones, esters and acids. Phenolic compounds mainly consisted of G (guaiacyl)-type phenols.
This paper investigated the pyrolytic behaviors of enzymatic hydrolysis lignin (EHL) and EHL treated with steam explosion (EHL-SE) by pyrolysis-gas chromatography/mass spectrometer (Py-GC/MS). It was shown that the main component of the pyrolysis products was phenolic compounds, including G-type, H-type, S-type, and C-type phenols. With different treatment methods, the proportion of units in phenolic products had changed significantly. Meanwhile, proximate, elemental, and FTIR analysis of both lignin substrates were also carried out for a further understanding of the lignin structure and composition with or without steam explosion treatment. FTIR result showed that, after steam explosion treatment, the fundamental structural framework of the lignin substrate was almost unchangeable, but the content of lignin constituent units, e.g., hydroxyl group and alkyl group, evidently changed. It was noticeable that 2-methoxy-4-vinylphenol with 11% relative content was the most predominant pyrolytic product for lignin after steam explosion treatment. Combined with the above analysis, the structural change and pyrolysis product distribution of EHL with or without steam explosion treatment could be better understood, providing more support for the multi-functional utilization of lignin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.