BackgroundSUMO-activating enzyme subunit 2 (SAE2) is the sole E1-activating enzyme required for numerous important protein SUMOylation, abnormal of which is associated with carcinogenesis. SAE2 inactivation was recently reported to be a therapeutic strategy in cancers with Myc overexpression. However, the roles of SAE2 in small cell lung cancer (SCLC) are largely unknown.MethodsStably SAE2 knockdown in H446 cells were established with a lentiviral system. Cell viability, cell cycle, and apoptosis were analyzed using MTT assay and flow cytometric assay. Expression of SAE2 mRNA and protein were detected by qPCR, western blotting, and immunohistochemical staining. Cell invasion and migration assay were determined by transwell chamber assay. H446 cells with or without SAE2 knockdown, nude mice models were established to observe tumorigenesis.ResultsSAE2 was highly expressed in SCLC and significantly correlated with tumorigenesis in vivo. Cancer cells with RNAi-mediated reduction of SAE2 expression exhibited growth retardation and apoptosis increasing. Furthermore, down-regulation of SAE2 expression inhibited migration and invasion, simultaneously increased the sensitivity of H446 to etoposide and cisplatin.ConclusionsSAE2 plays an important role in tumor growth, metastasis, and chemotherapy sensitivity of H446 and is a potential clinical biomarker and therapeutic target in SCLC with high c-Myc expression.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-015-0164-y) contains supplementary material, which is available to authorized users.
BackgroundBisphosphonates have exhibited anti-tumor activity in non-small cell lung cancer (NSCLC). We aimed to evaluate whether the combination of bisphosphonates with tyrosine kinase inhibitors of EGFR (EGFR-TKIs) could obtain a synergistic effect on advanced NSCLC patients with EGFR mutations.MethodsBetween January 2008 and October 2013, 114 advanced EGFR mutations NSCLC patients who received EGFR-TKIs as first-line therapy were recruited from two cancer centers. Patients were separated into EGFR-TKIs alone or EGFR-TKIs plus bisphosphonates (combination) group. Median progression free survival (mPFS), median overall survival (mOS) distributions and survival curves were analyzed.ResultsAmong the 114 patients, 62 had bone metastases (19 patients treated with EGFR-TKIs, 43 patients treated with EGFR-TKIs + bisphosphonates). Median PFS and OS were significantly improved in combination group compared with EGFR-TKIs group (mPFS: 15.0 vs 7.3 months, P = 0.0017; mOS: 25.2 vs 10.4 months, P = 0.0015) in patients with bone metastases. Among the 71 patients (19 patients with bone metastases) treated with EGFR-TKIs alone, patients with bone metastases had poor survival prognosis (mPFS:7.3 vs 12.1 months, P = 0.0434; mOS:10.4 vs 22.0 months, P = 0.0036). The survival of patients with bone metastases who received EGFR-TKIs plus bisphosphonates therapy was non-inferior to patients without bone metastases treated with EGFR-TKIs alone (mPFS: 15.0 vs 12.1 months, p = 0.1871; mOS: 25.2 vs 22.0 months, p = 0.9798).ConclusionsConcomitant use of bisphosphonates and EGFR-TKIs improves therapeutic efficacy and brings survival benefits to NSCLC patients with EGFR mutation and bone metastases.
Background: There are obviously ethnic differences between the UGT1A1 gene polymorphisms. Due to the difference of genetic background and environment, the treatment with colorectal cancer patients of Guangxi Zhuang should not completely follow the Euramerican or Chinese han patients. The study aimed to explore the correlation of UGT1A1 gene polymorphism of Guangxi Zhuang metastatic colorectal cancer (mCRC) with irinotecan-based chemotherapy, in order to develop an individualized irinotecan regimen for mCRC patients of Guangxi Zhuang. Methods: From June 2013 and June 2015, a total of 406 patients of Guangxi who were histologically diagnosed as metastatic colorectal cancer with 102 patients of this cohort with three generations of Zhuang, and 86 patients that conformed to inclusion and exclusion criteria were competitively enrolled. The distribution of UGT1A1 gene polymorphism was analyzed-retrospectively in all patients. Pyrosequencing method was used to detect the UGT1A1*28 and*6 gene polymorphism in the 86 Guangxi Zhuang mCRC patients. After first-line chemotherapy with FOLFIRI regimen, the relationship between gene polymorphism of UGT1A1 and adverse reactions, and efficacy of Irinotecan were analyzed with χ2 test and Kaplan-Meier method.
Abstract. Non-small cell lung cancer (NSCLC) patients with epithelial growth factor receptor (EGFR) mutations and bone metastases are often concurrently administered tyrosine kinase inhibitors (TKIs) and bisphosphonates. Yet, the effects and mechanisms of these agents are unclear. In the present study, we aimed to ascertain whether zoledronic acid (ZA) increases the antitumor effects of gefitinib treatment on NSCLC with EGFR mutations and the related mechanisms of action. The effects of ZA and gefitinib on NSCLC tumor cells with EGFR mutations (HCC827, HCC827 GR and H1975) in regards to proliferation, apoptosis, cell cycle and signaling pathways were detected. ZA increased the antitumor effects of gefitinib on NSCLC with EGFR activating mutations and TKI resistance in vitro. Gefitinib caused cell cycle arrest in the G0/G1 phase, ZA induced S phase accumulation and the effect of the combined treatment was neutralization. Combined treatment obviously inhibited STAT3 and/or p-STAT3 protein expression compared with treatment with each single drug in vitro and in vivo, and it also significantly inhibited TKI resistance NSCLC tumor growth in vivo. In conclusion, ZA increased the antitumor effects of gefitinib on NSCLC with EGFR activating mutations and TKI resistance by regulating the cell cycle, inducing caspase-3 expression and inhibiting STAT3 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.