A novel object tracking algorithm is presented in this paper by using the joint colortexture histogram to represent a target and then applying it to the mean shift framework. Apart from the conventional color histogram features, the texture features of the object are also extracted by using the local binary pattern (LBP) technique to represent the object. The major uniform LBP patterns are exploited to form a mask for joint color-texture feature selection. Compared with the traditional color histogram based algorithms that use the whole target region for tracking, the proposed algorithm extracts effectively the edge and corner features in the target region, which characterize better and represent more robustly the target. The experimental results validate that the proposed method improves greatly the tracking accuracy and efficiency with fewer mean shift iterations than standard mean shift tracking. It can robustly track the target under complex scenes, such as similar target and background appearance, on which the traditional color based schemes may fail to track.
Abstract:The background-weighted histogram (BWH) algorithm proposed in [2] attempts to reduce the interference of background in target localization in mean shift tracking. However, in this paper we prove that the weights assigned to pixels in the target candidate region by BWH are proportional to those without background information, i.e. BWH does not introduce any new information because the mean shift iteration formula is invariant to the scale transformation of weights. We then propose a corrected BWH (CBWH) formula by transforming only the target model but not the target candidate model. The CBWH scheme can effectively reduce background's interference in target localization. The experimental results show that CBWH can lead to faster convergence and more accurate localization than the usual target representation in mean shift tracking. Even if the target is not well initialized, the proposed algorithm can still robustly track the object, which is hard to achieve by the conventional target representation.
-A scale and orientation adaptive mean shift tracking (SOAMST) algorithm is proposed in this paper to address the problem of how to estimate the scale and orientation changes of the target under the mean shift tracking framework. In the original mean shift tracking algorithm, the position of the target can be well estimated, while the scale and orientation changes can not be adaptively estimated. Considering that the weight image derived from the target model and the candidate model can represent the possibility that a pixel belongs to the target, we show that the original mean shift tracking algorithm can be derived using the zero th and the first order moments of the weight image. With the zero th order moment and the Bhattacharyya coefficient between the target model and candidate model, a simple and effective method is proposed to estimate the scale of target. Then an approach, which utilizes the estimated area and the second order center moment, is proposed to adaptively estimate the width, height and orientation changes of the target. Extensive experiments are performed to testify the proposed method and validate its robustness to the scale and orientation changes of the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.