Sphingosine kinase 1 (Sphk1) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). Growing studies have demonstrated that Sphk1 is overexpressed in various types of solid cancers and can be induced by growth factors, cytokines, and carcinogens, leading to the increase of S1P production. Subsequently, the increased Sphk1/S1P facilitates cancer cell proliferation, mobility, angiogenesis, invasion, and metastasis. Therefore, Sphk1/S1P signaling plays oncogenic roles. This review summarizes the features of Sphk1/S1P signaling and their functions in colorectal cancer cell growth, tumorigenesis, and metastasis, as well as the possible underlying mechanisms.
Despite initial progress in preclinical models, most known histone deacetylase inhibitors (HDACis) used as a single agent have failed to show clinical benefits in nearly all types of solid tumours. Hence, the efficacy of HDACis in solid tumours remains uncertain. Herein, we developed a hybrid HDAC inhibitor that sensitized solid tumours to HDAC-targeted treatment.Methods: A hybrid molecule, Roxyl-zhc-84 was designed and synthesized with novel architecture. The pharmacokinetics and toxicity of Roxyl-zhc-84 were analysed. The antitumour effects of Roxyl-zhc-84 on solid tumours were investigated by assessing cell growth, apoptosis and cell cycle in vitro and in three in vivo mouse models and compared to those of corresponding control inhibitors alone or in combination. Gene set enrichment analysis was performed, and relevant JAK1-STAT3-BCL2 signalling was identified in vitro and in vivo in mechanistic studies.Results: Roxyl-zhc-84 showed excellent pharmacokinetics and low toxicity. The novel hybrid inhibitor Roxyl-zhc-84 induced cell apoptosis and G1-phase arrest in breast cancer and ovarian cancer cell lines. In three mouse models, oral administration of Roxyl-zhc-84 led to significant tumour regression without obvious toxicity. Moreover, Roxyl-zhc-84 dramatically improved the limited response of traditional HDAC inhibitors in solid tumours via overcoming JAK1-STAT3-BCL2-mediated drug resistance. Roxyl-zhc-84 treatment exhibited vastly superior efficacy than the combination of HDAC and JAK1 inhibitors both in vitro and in vivo.Conclusion: Concurrent inhibition of HDAC and CDK using Roxyl-zhc-84 with additional JAK1 targeting resolved the limited response of traditional HDAC inhibitors in solid tumours via overcoming JAK1-STAT3-BCL2-mediated drug resistance, providing a rational multi-target treatment to sensitize solid tumours to HDACi therapy.
mRNA translation reprogramming occurs frequently in many pathologies, including cancer and viral infection. It remains largely unknown whether viral-induced alterations in mRNA translation contribute to carcinogenesis. Most cervical cancer is caused by high-risk human papillomavirus infection, resulting in the malignant transformation of normal epithelial cells mainly via viral E6 and E7 oncoproteins. Here, we utilized polysome profiling and deep RNA sequencing to systematically evaluate E6-regulated mRNA translation in HPV18-infected cervical cancer cells. We found that silencing E6 can cause over a two-fold change in the translation efficiency of ~653 mRNAs, most likely in an eIF4E- and eIF2α-independent manner. In addition, we identified that E6 can selectively upregulate the translation of WNT4, JIP1, and JIP2, resulting in the activation of the noncanonical WNT/PCP/JNK pathway to promote cell proliferation in vitro and tumor growth in vivo. Ectopic expression of WNT4/JIP2 can effectively rescue the decreased cell proliferation caused by E6 silencing, strongly suggesting that the WNT4/JIP2 pathway mediates the role of E6 in promoting cell proliferation. Thus, our results revealed a novel oncogenic mechanism of E6 via regulating the translation of mRNAs.
Photoactivated therapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a spatiotemporally precise, controllable, and noninvasive method for tumor therapy and has therefore attracted increasing attention in recent years. However, it is still a challenge to obtain highly efficient therapeutic photoactive agents (PAAs) and deliver them into tumor, especially the core of solid tumors. Here, we have developed a newly engineered monocyte (MNC)-based PAA system that realizes precise and highly efficient tumor diagnosis and therapy. First, a nearinfrared emissive PAA molecule with both strong singlet oxygen ( 1 O 2 ) production and high photothermal conversion efficiency was precisely designed for realizing simultaneous PDT and PTT of tumor and was further fabricated to form PAA nanoparticles (NPs). After loading the PAA NPs into MNCs, the MNCs were then decorated with cyclic Arg-Gly-Asp (cRGD) groups through a metabolic labeling method to further improve their ability of targeting and homing into the deep regions of tumors. Using this strategy, we have achieved highly efficient solid tumor ablation results both in vitro and in vivo, indicating that our strategy has a promising prospect for solid tumor therapy.
Single‐atom catalysts (SACs) with a maximum atom utilization efficiency have received growing attention in heterogeneous catalysis. The supporting substrate that provides atomic‐dispersed anchoring sites and the local electronic environment in these catalysts is crucial to their activity and stability. Here, inspired by N‐doped graphene substrate, the role of N is explored in transition metal nitrides for anchoring single metal atoms toward single‐atom catalysis. A pore‐rich metallic vanadium nitride (VN) nanosheet is fabricated as one supporting‐substrate example, whose surface features abundant unsaturated N sites with lower binding energy than that of widely used N‐doped graphene. Impressively, it is found that this support can anchor nearly all platinum‐group single atoms (e.g., platinum, palladium, iridium, and ruthenium), and even be extendable to multiple SACs, i.e., binary (Pt/Pd) and ternary (Pt/Pd/Ir). As a proof‐of‐concept application for hydrogen production, Pt‐based SAC (Pt1‐VN) performs excellently, exhibiting a mass activity up to 22.55 A mg−1Pt at 0.05 V and a high turnover frequency value close to 0.350 H2 s−1, superior to commercial platinum/carbon catalyst. The catalyst's durability can be further improved by using binary (Pt1Pd1‐VN) SAC. This work provides inexpensive and durable nitride‐based support, giving a possible pathway for universally constructing platinum‐group SACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.