The X-linked deubiquitinase, USP9X, is implicated in multiple cancers by targeting various substrates. Increased expression of USP9X is observed in non-small-cell lung cancer (NSCLC) and is correlated with poor prognosis. However, the molecular mechanism for USP9X regulation of tumor cell survival and tumorigenesis in NSCLC is less defined.Methods: In this study, chemical labeling, quantitative proteomic screening was applied to analyze A549 cells with or without USP9X RNA interference. Functional in vitro and in vivo experiments were performed to confirm the oncogenic effects of USP9X in NSCLC and to investigate the underlying mechanisms.Results: The resulting data suggested that dual specificity protein kinase TTK is a potential substrate of USP9X. Further experimental evidences confirmed that USP9X stabilized TTK via direct interaction and efficient deubiquitination of TTK on K48 ubiquitin chain. Moreover, knockdown of USP9X or TTK inhibited cell proliferation, migration and tumorigenesis, and the immunohistochemical analysis of clinical NSCLC samples showed that the protein expression levels of USP9X and TTK were significantly elevated and positively correlated in tumor tissues.Conclusions: In summary, our data demonstrated that the USP9X-TTK axis may play a critical role in NSCLC, and could be considered as a potential therapeutic target.
The menstrual cycle of the female uterus leads to periodic changes of the endometrium. These changes are important for developing the endometrial receptivity and for achieving competency of embryo implantation. However, the molecular events underlying the endometrial receptivity process remain poorly understood. Here we applied an LC-MS-based label-free quantitative proteomic approach to compare the endometrial tissues in the midsecretory (receptive) phase with the endometrial tissues in the proliferative phase from age-matched woman (n = 6/group). The proteomes of endometrial tissues were extracted using an SDS-based detergent, digested by the filter-aided sample preparation procedures, and subsequently analyzed by nano-LC-MS/MS (Orbitrap XL) with a 4 h gradient. Reliable protein expression profiles were reproducibly obtained from the endometrial tissues in the receptive and proliferative phases. A total of 2138 protein groups were quantified under highly stringent criteria with a false discovery rate of <1% for peptide and protein groups. Among these proteins, 317 proteins had differences in expression that were statistically significant between the receptive and proliferative phases. Direct protein-protein interaction network analyses of these significantly changed proteins showed that the up-regulation of creatine kinase B-type (CKB) in the receptive phase may be related to endometrium receptivity. The interaction network also showed that proteins related to cell-cell adhesion were down-regulated. Moreover, the results from KEGG pathway analyses are consistent with the protein-protein interaction results. The proteins, including alpha-actinin (ACTN), extracellular matrix proteins, integrin alpha-V, and so on, that are involved in the focal adhesion pathway were down-regulated in the receptive phase compared with the proliferative phase, which may facilitate the implantation of the fertilized ovum. Selected proteins were validated by Western blot analysis and indirect immunofluorescence, including the up-regulation of CKB and down-regulation ACTN in the receptive phase. In summary, our proteomic analysis study shows potential for predicting the endometrial remodeling from the proliferative to the receptivity phase in women, and these results also reveal the key biological mechanisms (such as energy metabolism and focal adhesion) underlying human endometrial receptivity.
A novel one-dimensional online pH gradient-eluted strong cation exchange-nanoelectrospray ionization-tandem mass spectrometry (SCX-nano-ESI-MS/MS) method was developed for protein identification and tested with a mixture of six standard proteins, total lysate of HuH7 and N2a cells, as well as membrane fraction of N2a cells. This method utilized an online nanoflow SCX column in a nano-LC system coupled with a nanoelectrospray high-resolution mass spectrometer. Protein digests were separated on a nanoflow SCX column with a pH gradient and directly introduced into a mass spectrometer through nanoelectrospray ionization. More than five thousand unique peptides were identified in each 90 min LC-MS/MS run using 500 nanogram of protein digest either from total cell lysate or from membrane fraction. The unique peptide overlap between online strong cation exchange nano-ESI-MS/MS (SCXLC-MS/MS) and reverse phase nano-ESI-MS/MS (RPLC-MS/MS) is only ≤30%, which indicated these two methods were complementary to each other. The correlation coefficient of retention time and theoretical isoelectric point (pI) of identified peptides in SCXLC-MS/MS was higher than 0.4, which showed that peptides elution in SCXLC-MS/MS was dependent on their charge states. Furthermore, SCXLC-MS/MS showed identification capability for a higher proportion of basic peptides compared to the RPLC-MS/MS method, especially for histidine-containing peptides. Our SCXLC-MS/MS method is an excellent alternative method to the RPLC-MS/MS method for analysis of standard proteins, total cell and membrane proteomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.