To enhance the gasoline octane number, low-octane linear n-alkanes should be converted into their high-octane di-branched isomers via n-alkane hydroisomerization. Therefore, hierarchical SAPO-11-based catalysts are prepared by adding different contents of sodium dodecylbenzene sulfonate (SDBS), and they are applied in n-nonane hydroisomerization. When n(SDBS)/n(SiO2) is less than or equal to 0.125, the synthesized hierarchical molecular sieves are all pure SAPO-11, and as the SDBS content increases, the submicron particle size decreases, and the external surface area (ESA) increases. Additionally, these hierarchical SAPO-11 have smaller submicron particles and higher ESA values than conventional SAPO-11. When n(SDBS)/n(SiO2) is greater than 0.125, with increasing SDBS content (n(SDBS)/n(SiO2) = 0.25), the synthesized SAPO-11 contains amorphous materials, which leads to a decline in the ESA; with the further increase in SDBS content (n(SDBS)/n(SiO2) = 0.5), the products are all amorphous materials. These results indicate that in the case of n(SDBS)/n(SiO2) = 0.125, the synthesized SAPO-11 molecular sieve (S–S3) has the most external Brønsted acid centers and the highest ESA of these SAPO-11, and these advantages favor generation of the di-branched isomers in hydrocarbon hydroisomerization. Among these Pt/SAPO-11 catalysts, Pt/S–S3 displays the highest selectivity to entire isomers (83.4%), the highest selectivity to di-branched isomers (28.1%) and the minimum hydrocracking selectivity (15.7%) in n-nonane hydroisomerization.
with (NH 4 ) 2 SO 4 and subsequent calcination. Compared with the physical mixture of SO 4 2− /ZrO 2 and conventional SAPO-11 (SZ+SA-11), SZ@SA-11 possesses smaller ZrO 2 particles and more tetragonal ZrO 2 . Moderate and strong Brønsted acid sites (MSBAS) are produced only via interactions between tetragonal ZrO 2 and sulfate, so SZ@ SA-11 with more tetragonal ZrO 2 has a greater amount of MSBAS than SZ+SA-11.
Ni(MoS4)2(C13H30N)2 was synthesized and adopted for preparing a NiMoS/γ-Al2O3 hydrodesulfurization catalyst, and the as-prepared catalyst exhibits superior 4,6-dimethyldibenzothiophene hydrodesulfurization activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.