Two-phase rotating detonation ramjets are considered to be suitable for aerospace applications due to their high thermodynamic cycle efficiency. These engines have an extremely complex internal flow field, in which the liquid fuel undergoes physical and chemical processes such as fragmentation, evaporation, mixing, and combustion; these processes also interact with detonation waves that have significant gradients. This makes it difficult to simulate a three-dimensional (3D) full-process rotating detonation combustion chamber. Here, based on the Euler–Lagrangian simulation method, a 3D numerical combustion chamber was simulated using kinetic theory and the constant thermal physical property parameter (TPPP) calculation method. The accuracy of these methods was then compared with the existing experimental results and theoretical values. Calculating the TPPPs using kinetic theory brought about a relatively high-pressure peak and detonation wave temperature; the detonation wave profile was also finer and more precise. The detonation wave propagation velocity of the two-phase detonation is estimated to be about 60% of the theoretical gas-phase CJ velocity. The calculation method of physical parameters has relatively little influence on the engine’s operating frequency and the detonation wave's propagation velocity but has a more significant influence on the peak pressure. Constant TPPPs can be used when the Kelvin–Helmholtz–Rayleigh–Taylor model with insufficient precision is used to consider the breakup of droplets and leads to the acceleration of the propagation speed of two-phase detonation waves.
Air-breathing two-phase rotating detonation engines possess high thermodynamic cycle efficiency and have attracted extensive attention in domain of wide range flight aircraft. In this study, an engine configuration is proposed, and the corresponding numerical model is established using the Euler-Lagrange method. The engine type is suitable for flying at an altitude of 28 kilometers and a flying speed of Ma 6. Our data show that the engine operates primarily in chaos in this flight state. The peak pressure of the detonation wave is about 0.85 MPa, the peak temperature of the detonation wave is about 4500 K, the average thrust of the engine is 2637 N, and the average fuel-specific impulse is about 2989 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.