Renal cell carcinoma (RCC) is a major healthcare burden globally. Tumor-derived extracellular vesicles (EVs) contribute to the formation of a pro-metastatic microenvironment. In the present study, we explored the role and mechanism of RCC cell 786-O-derived EVs (786-O-EVs) in RCC. First, 786-O-EVs were extracted and identified, and EV internalization of RCC cells was observed. RCC cell malignant behaviors and long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression patterns were detected before and after 786-O-EV treatment. MALAT1 was intervened to evaluate RCC cell behaviors. The downstream mechanism involving MALAT1 was predicted. In addition, the relationship among MALAT1, transcription factor CP2 like 1 (TFCP2L1) and ETS proto-oncogene 1, transcription factor (ETS1) was analyzed. TFCP2L1 expression patterns were measured after 786-O-EV exposure. Tumor xenograft formation assay and lung metastasis model were adopted to verify the role of 786-O-EVs in vivo in RCC. It was found that 786-O-EVs could be internalized by RCC cells. 786-O-EVs promoted RCC cell malignant behaviors, accompanied by elevated MALAT1 expression levels. The 786-O-EVs with MALAT1 knockdown attenuated the promotive effect of sole 786-O-EVs on RCC cells. MALAT1 located ETS1 in the TFCP2L1 promoter and negatively regulated TFCP2L1, and ETS1 protein could specifically bind to MALAT1. 786-O-EVs enhanced the binding of ETS1 and the TFCP2L1 promoter and decreased TFCP2L1 expression. In vivo, 786-O-EVs promoted tumor growth and RCC lung metastasis, which was suppressed following inhibition of MALAT1. Our findings indicated that 786-O-EVs promoted RCC invasion and metastasis by transporting MALAT1 to promote the binding of transcription factor ETS1 and TFCP2L1 promoter.
The objective of this study is to identify the genetic defects in a Chinese family with autosomal dominant familial neurohypophyseal diabetes insipidus. Complete physical examination, fluid deprivation, and DDAVP tests were performed in three affected and three healthy members of the family. Genomic DNA was extracted from leukocytes of venous blood of these individuals for polymerase chain reaction amplification and direct sequencing of all three coding exons of arginine vasopressin-neurophysin II (AVP-NPII) gene. Seven members of this family were suspected to have symptomatic vasopressin-deficient diabetes insipidus. The water deprivation test in all the patients confirmed the diagnosis of vasopressin-deficient diabetes insipidus, with the pedigree demonstrating an autosomal dominant inheritance. Direct sequence analysis revealed a novel mutation (c.193T>A) and a synonymous mutation (c.192C>A) in the AVP-NPII gene. The missense mutation resulted in the substitution of cysteine by serine at a highly conserved codon 65 of exon 2 of the AVP-NPII gene in all affected individuals, but not in unaffected members. We concluded that a novel missense mutation in the AVP-NPII gene caused neurohypophyseal diabetes insipidus in this family, due to impaired neurophysin function as a carrier protein for AVP. The Cys65 is essential for NPII in the formation of a salt bridge with AVP. Presence of this mutation suggests that the portion of the neurophysin peptide encoded by this sequence is important for the normal expression of vasopressin.
Alveolar epithelial type II (AT II) cells need phosphate (Pi) for surfactant synthesis. The Na-dependent (Na(d)) Pi transporters NaPi-IIb and Pit-1 are expressed in lung, but their expression, regulation, and function in AT II cells remain unclear. We studied NaPi-IIb and Pit-1 mRNA expression in cultured AT II cells isolated from adult rat lung, their regulation by agents known to enhance surfactant production, dexamethasone (dex) and dibutyryl cyclic AMP (cAMP), and the effects of dex and cAMP on Na(d) Pi uptake by this cell type. By Northern analysis, cultured AT II cells expressed both NaPi-IIb (4.8 and 4.0 kb) and Pit-1 (4.3 kb) mRNA. Treatment with 100 nmol/l dex for 24 h decreased the expression of both mRNAs (to 0.48 +/- 0.06 and 0.77 +/- 0.05, respectively, as compared to control), while 0.1 mmol/l cAMP stimulated NaPi-IIb (1.94 +/- 0.22) but not Pit-1 mRNA (0.90 +/- 0.05, compared to vehicle-treated cells). NaPi-IIb and Pit-1 proteins could not be identified by western analysis of plasma membrane preparations of cultured AT II cells. AT II cells take up Pi in a Na(d) manner. Uptake was slightly (to 0.78-fold of the control) decreased by 100 nmol/l dex but not affected by 0.1 mmol/l cAMP treatment. Although NaPi-IIb mRNA expression was maintained to some extent by AT II cells kept in primary culture, Pi uptake was more closely related to Pit-1 mRNA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.