Magnetoelectric (ME) sensors for the weak magnetic field measurement have attracted a lot of attention because of their high sensitivity and easy integration. However, the ME sensor performs well only at its working-point under a direct current (DC) bias field (Hbias) and mechanical resonance frequency (fres). The measurement of DC to ultralow frequency (0–100 Hz) weak magnetic fields has increasing demands, such as in geomagnetic anomaly fields, geological and mineral exploration, magnetocardiography, and magnetoencephalography. Unfortunately, fres of ME sensors is on the order of several tens of kilohertz, which is far higher than the ultralow frequency desired. Moreover, if the operation frequency deviates from fres, the sensitivity will deteriorate rapidly. In this study, a working-point perturbation method was used to measure the weak magnetic fields at 0–100 Hz with a high magnetic field resolution. (1) The perturbation of fres using an ultralow frequency (fac) magnetic field results in two modulation peaks with frequencies of fres ± fac. The frequency and resolution of the measured alternating current magnetic field can be obtained by varying fac and the modulation depth. A resolution around 1 nT for fac > 10 Hz and a lowest operation frequency of 0.1 Hz were achieved using our measurement system. (2) A high field resolution of 3 nT (better than the frequency perturbation method with a resolution of 16 nT at 0.1 Hz) can be achieved by the perturbation of Hbias at fres because the ME sensor is still working at the quasi-working-point and helped by lock-in amplifier technology.
The magnetoelectric (ME) sensor is a new type of magnetic sensor with ultrahigh sensitivity that suitable for the measurement of low-frequency weak magnetic fields. In this study, a metglas/PZT-5B ME sensor with mechanical resonance frequency fres of 60.041 kHz was prepared. It is interesting to note that its magnetic field resolution reached 0.20 nT at fres and 0.34 nT under a DC field, respectively. In order to measure ultralow-frequency AC magnetic fields, a frequency up-conversion technique was employed. Using this technique, a limit of detection (LOD) under an AC magnetic field lower than 1 nT at 8 Hz was obtained, and the minimum LOD of 0.51 nT was achieved at 20 Hz. The high-resolution ME sensor at the sub-nT level is promising in the field of low-frequency weak magnetic field measurement technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.