In order to solve the problem of optimal control of the sewage treatment process based on a multiobjective evolutionary algorithm, an intelligent optimal control of sewage treatment based on a multiobjective evolutionary algorithm is proposed in this paper. In this paper, the decomposition based multiobjective evolutionary algorithm (MOEA/D) is improved, and it is expected that the uniformly distributed approximate Pareto frontier can be obtained with fewer evolution times. For each new solution generated by the MOEA/D algorithm, the improved algorithm in this paper finds the most suitable subproblem for the new solution from all subproblems and replaces the population in its neighborhood. On the basis of the original subproblem, it carries out secondary optimization to improve the utilization rate of the children and then finds the approximate Pareto frontier in the optimization problem with fewer iterations. The experimental results show that AE, PE, and EC Based on SS–MOEA/D optimal control method are reduced by 6.91%, 1.54%, and 5.58%, respectively. Conclusion. The algorithm significantly reduces the number of steps to find the Pareto frontier, significantly improves the performance of the MOEA/D algorithm, and achieves the optimization goal in the optimization of the sewage treatment process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.