Diaporthe species (Sordariomycetes, Diaporthales) are often reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. In this study, Diaporthe specimens were collected from symptomatic twigs and branches at the Huoditang Forest Farm in Shaanxi Province, China. Identification was done using a combination of morphology and comparison of DNA sequence data of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions. Three new Diaporthe species are proposed: D. albosinensis, D. coryli and D. shaanxiensis. All species are illustrated and their morphology and phylogenetic relationships with other Diaporthe species are discussed.
Many species of Melampsora on Populus have been reported in China, based on morphological characteristics of both uredial and telial states, and on host species, but their morphology and taxonomy are still poorly defined. In this study, 196 specimens representing Melampsora species on poplars and collected from various areas of China were used for morphological observations. The morphological characteristics of urediniospores and teliospores were examined with light and scanning electron microscopy. The specimens could be classified into five groups based on their morphology. For the sequencing of the nuclear large subunit rDNA (D1/D2), 5.8S rDNA and their internal transcribed spacers, ITS1 and ITS2 region, 54 specimens were selected from the specimens used in morphological observations. These specimens were separated into six clades by phylogenetic analyses of the D1/D2 and ITS regions. Correlations among morphological groups and phylogenetic clades based on these results suggest a revision of these species. In particular, no evidence to discriminate specimens of M. acedioides, M. magnusiana, and M.Contribution no. 185 Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan rostrupii was found from either morphological characteristics or sequence analysis.
The phylogeography of common and widespread species helps to elucidate the history of local flora and vegetation. In this study, we selected Cotinus coggygria, a species widely distributed in China's warm-temperate zone. One chloroplast DNA (cpDNA) region and ecological niche modelling were used to examine the phylogeographic pattern of C. coggygria. The cpDNA data revealed two phylogeographic groups (Southern and Northern) corresponding to the geographic regions. Divergence time analyses revealed that divergence of the two groups occurred at approximately 147,000 years before the present (BP), which coincided with the formation of the downstream area of the Yellow River, indicating that the Yellow River was a weak phylogeographic divide for C. coggygria. The molecular data and ecological niche modelling also indicated that C. coggyria did not experience population expansion after glaciations. This study thus supports the fact that Pleistocene glacial cycles only slightly affected C. coggygria, which survived in situ and occupied multiple localised glacial refugia during glaciations. This finding is contrary to the hypothesis of large-scale range habitat contraction and retreat into a few main refugia.
A novel rust species, Gymnosporangium huanglongense, was detected on Juniperus przewalskii in China. This species was characterized by the basal cell of its two-celled teliospores possessing two pores near the septum, and the distal cell possessing either two pores near the septum or occasionally an apical pore and one pore near the septum. It was also separated from other Gymnosporangium species based on analyses of internal transcribed spacer region and LSU rDNA partial gene sequences.
Prunus divaricata and Prunus armeniaca are important wild fruit trees that grow in part of the Western Tianshan Mountains in Central Asia, and they have been listed as endangered species in China. Shot-hole disease of stone fruits has become a major threat in the wild-fruit forest of the Western Tianshan Mountains. Twenty-five isolates were selected from diseased P. divaricata and P. armeniaca. According to the morphological characteristics of the culture, the 25 isolates were divided into eight morphological groups. Conidia were spindle-shaped, with ovate apical cells and truncated basal cells, with the majority of conidia comprising 3–4 septa, and the conidia had the same shape and color in morphological groups. Based on morphological and cultural characteristics and multilocus analysis using the internal transcribed spacer (ITS) region, partial large subunit (LSU) nuclear ribosomal RNA (nrRNA) gene, and the translation elongation factor 1-alpha (tef1) gene, the fungus was identified as Wilsonomyces carpophilus. The 25 W. carpophilus isolates had high genetic diversity in phylogenetic analysis, and the morphological groups did not correspond to phylogenetic groups. The pathogenicity of all W. carpophilus isolates was confirmed by inoculating healthy P. divaricata and P. armeniaca leaves and fruits. The pathogen was re-isolated from all inoculated tissues, thereby fulfilling Koch’s postulates. There were no significant differences in the pathogenicity of different isolates inoculated on P. armeniaca and P. divaricata leaves (p > 0.05). On fruit, G053 7m3 and G052 5m2 showed significant differences in inoculation on P. armeniaca, and G010 5m2 showed extremely significant differences with G004 7m2 and G004 5m2 on P. divaricata (p < 0.05). This is the first report on shot-hole disease of P. armeniaca (wild apricot) leaves and P. divaricata induced by W. carpophilus in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.