Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.
The UNIFAC model has recently become very popular for ionic liquids (ILs) because of its applicability for prediction of thermodynamic properties. This work is a continuation of our studies on the extension of group parameters of the UNIFAC model to systems with ILs. The new IL groups for 33 main groups and 53 subgroups were added into the current UNIFAC parameter matrix. The parameters of group surface area and volume for ILs were obtained by the COSMO calculation, while the group binary interaction parameters, a nm and a mn , were obtained by means of correlating the activity coefficients of solutes at infinite dilution in ILs at different temperatures exhaustively collected from literature by the end of 2011. The predicted results of UNIFAC model are more accurate than those of the COSMO-RS model so that it can be used for identifying the general relationship between molecular structure of ILs and separation performance for the separation of liquid mixtures with ILs.
Extractive distillation is commonly used for the separation of azeotropic or close-boiling mixtures in the chemical industry. During the past decade, the use of ionic liquids (ILs) as entrainers has received considerable attention due to their unique advantages when applied in extractive distillation. This work is devoted to providing an easy-to-read and comprehensive review on the recent progress made by chemical engineers, focusing on the issues of predictive thermodynamic models, structure-property relations, separation mechanisms, and process simulation and optimization. This review spans from the molecular level to the industrial scale, to provide a theoretical insight into the molecular interactions between ILs and the components to be separated. Moreover, a comprehensive database on the vapor-liquid equilibria (VLE) and activity coefficients at infinite dilution concerning ILs is provided as Supporting Information. Concluding remarks are made on the unsolved scientific issues with respect to this promising special distillation technology.
The new group binary interaction parameters of UNIFAC model (anm and amn) between CO2 and 22 ionic liquid (IL) groups were obtained by means of correlating the solubility data of CO2 in pure ILs at different temperatures (>273.2 K). We measured the CO2 solubility at low temperatures down to 243.2 K in pure ILs, i.e., [OMIM]+[BF4]− and [OMIM]+[Tf2N]−, and their equimolar amount of mixture, in order to fill the blank of solubility data at low temperatures and also to justify the applicability of UNIFAC model over a wider temperature range. It was verified that UNIFAC model can be used for predicting the CO2 solubility in pure ILs and in the binary mixture of ILs both at high (>273.2 K) and low temperatures (<273.2 K) effectively, as well as identifying the new structure–property relation. This is the first work to extend the UNIFAC model to IL‐CO2 systems. © 2013 American Institute of Chemical Engineers AIChE J 60: 716–729, 2014
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.