The laser polishing technique offers an adaptable, accurate, and environmentally friendly solution to enhance the surface quality of additive manufactured metallic components. Recent work has shown that the surface roughness of laser additive manufactured metallic alloys can be significantly reduced via the laser polishing method. This paper examines the mechanical performances of a laser polished surface fabricated by selective laser melting (SLM). Compared with the original SLM surface, systematic measurements revealed that the surface roughness of the laser polished surface can be effectively reduced from 6.53 μm to 0.32 μm, while the microhardness and wear resistance increased by 25% and 39%, respectively. Through a thermal history analysis of the laser polishing process using the finite element model, new martensitic phase formation in the laser polished layer is carefully explained, which reveals significant effects on residual stress, strength, and fatigue. These findings establish foundational data to predict the mechanical performance of laser polished metallic components fabricated by additive manufacturing methods, and pave the way for functional surface design with practical application via the laser process.
The corrosion resistance and cytocompatibility of Ti-20Zr-10Nb-4Ta (TZNT) alloy modified by surface laser treatment were investigated. The scanning electron microscopy (SEM) measurements indicated that laser treatment on TZNT alloy generated groove morphologies with the width of 40 μm and the depth of~10 μm on the surface. The water contact angles along the groove direction decreased by 51% compared with that of the untreated alloy. The laser treatment promoted the oxidation of metallic Ti, Zr and Nb and produced more stable oxides on surface. The corrosion potential increased by 50% and corrosion current density decreased by 72% compared with that of the untreated alloy in the anodic polarization test for the alloy in Hank's solution at 37°C. This indicated the improvement of the corrosion resistance by laser treatment. The cytotoxicity testing results showed that the laser-treated TZNT alloy performed similar MC3T3-E1 cell viability compared with the untreated alloy. The cells displayed oriented growth along the groove direction due to the increased hydrophilicity. This novel material may be a new candidate in orthopedics and dentistry implantations fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.