Asphalt pavement ages and incurs various distresses due to natural and human factors. Thus, it is crucial to rapidly and accurately extract different types of pavement distress to effectively monitor road health status. In this study, we explored the feasibility of pavement distress identification using low-altitude unmanned aerial vehicle light detection and ranging (UAV LiDAR) and random forest classification (RFC) for a section of an asphalt road that is located in the suburb of Shihezi City in Xinjiang Province of China. After a spectral and spatial feature analysis of pavement distress, a total of 48 multidimensional and multiscale features were extracted based on the strength of the point cloud elevations and reflection intensities. Subsequently, we extracted the pavement distresses from the multifeature dataset by utilizing the RFC method. The overall accuracy of the distress identification was 92.3%, and the kappa coefficient was 0.902. When compared with the maximum likelihood classification (MLC) and support vector machine (SVM), the RFC had a higher accuracy, which confirms its robustness and applicability to multisample and high-dimensional data classification. Furthermore, the method achieved an overall accuracy of 95.86% with a validation dataset. This result indicates the validity and stability of our method, which highway maintenance agencies can use to evaluate road health conditions and implement maintenance.
With the increasing use and complexity of urban natural gas pipelines, the occurrence of accidents owing to leakage, fire, explosion, etc., has increased. Based on Quantitative Risk Analysis (QRA) models and Geographic Information System (GIS) technology, we put forward a quantitative risk simulation model for urban natural gas pipeline, combining with a multi-level grid-based pre-warning model. We develop a simulation and pre-warning model named QRA-Grid, conducting fire and explosion risk assessment, presenting the risk by using a grid map. Experiments show that by using the proposed method, we can develop a fire and explosion accident pre-warning model for gas pipelines, and effectively predict areas in which accidents will happen. As a result, we can make a focused and forceful policy in areas which have some potential defects in advance, and even carry out urban planning once more, rebuilding it to prevent the risk.
Abstract:As research on large regions of earth progresses, many geographical subdivision grids have been established for various spatial applications by different industries and disciplines. However, there is no clear relationship between the different grids and no consistent spatial reference grid that allows for information exchange and comprehensive application. Sharing and exchange of data across departments and applications are still at a bottleneck. It would represent a significant step forward to build a new grid model that is inclusive of or compatible with most of the existing geodesic grids and that could support consolidation and exchange within existing data services. This study designs a new geographical coordinate global subdividing grid with one dimension integer coding on a 2 n tree (GeoSOT) that has 2 n coordinate subdivision characteristics (global longitude and latitude subdivision) and can form integer hierarchies at degree, minute, and second levels. This grid has the multi-dimensional quadtree hierarchical characteristics of a digital earth grid, but also provides good consistency with applied grids, such as those used in mapping, meteorology, oceanography and national geographical, and three-dimensional digital earth grids. No other existing grid codes possess these characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.