The success of artificial vascular graft in the host to obtain functional tissue regeneration and remodeling is a great challenge in the field of small diameter tissue engineering blood vessels. In our previous work, poly(ε-caprolactone) (PCL)/fibrin vascular grafts were fabricated by electrospinning. It was proved that the PCL/fibrin vascular graft was a suitable small diameter tissue engineering vascular scaffold with good biomechanical properties and cell compatibility. Here we mainly examined the performance of PCL/fibrin vascular graft in vivo. The graft showed randomly arranged nanofiber structure, excellent mechanical strength, higher compliance and degradation properties. At 9 months after implantation in the rat abdominal aorta, the graft induced the regeneration of neoarteries, and promoted ECM deposition and rapid endothelialization. More importantly, the PCL/fibrin vascular graft showed more microvessels density and fewer calcification areas at 3 months, which was beneficial to improve cell infiltration and proliferation. Moreover, the ratio of M2/M1macrophage in PCL/fibrin graft had a higher expression level and the secretion amount of pro-inflammatory cytokines started to increase, and then decreased to similar to the native artery. Thus, the electrospun PCL/fibrin tubular vascular graft had great potential to become a new type of artificial blood vessel scaffold that can be implanted in vivo for long term.
The PERCA (PEroxy Radical Chemical Amplification) technique, which is based on the catalytic conversion of ambient peroxy radicals (HO and RO, where R stands for any organic chain) to a larger amount of nitrogen dioxide (NO) amplified by chain reactions by adding high concentrations of NO and CO in the flow reactor, has been widely used for total peroxy radical RO* (RO* = HO + ΣRO) measurements. High-sensitivity and accurate measurement of the NO concentration plays a key role in accurate measurement of the RO* concentration. In this paper, we report on the development of a dual-channel chemical amplification instrument, which combined the PERCA method with the incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS), for peroxy radical measurements. The IBBCEAS method is capable of simultaneously measuring multiple species with high spectral identification, and can directly measure NO concentrations with high sensitivity and high accuracy and without interference from other absorbers. The detection sensitivity of the developed PERCA-IBBCEAS instrument for HO radicals was estimated to be about 0.9 pptv (1σ, 60 s) at a relative humidity (RH) of 10%. Considering the error sources of NO detection, CL determination, and the radical partitioning in the air sample, the total uncertainty of RO* measurements was about 16-20%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.