Fire or high temperature is a big challenge to ultra-high performance concrete (UHPC). Strength loss of UHPCs can reach up to 80% after exposure to 800 °C. In this study, a total of six UHPC mixtures were designed and tested after subjected to elevated temperatures up to 1000 °C. The effects of aggregate type, fibre type and heating rate were investigated. Residual compressive strengths and stress-strain relationships were studied. Besides, attention was paid to explosive spalling since UHPCs are usually of compact structure and thus more vulnerable to explosive spalling than other concretes. Scanning electron microscope (SEM) analysis was conducted to help understand the mechanism of variation of internal structure under different temperatures. It was found the mixture containing steel slag and hybrid fibre had excellent fire resistance. After being subjected to 1000 °C, this mixture retained a residual compressive strength of 112.8 MPa or a relative value of 69%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.