We demonstrated a novel optical switch to control the high-order harmonic generation process so that single attosecond pulses can be generated with multiple-cycle pulses. The technique combines two powerful optical gating methods: polarization gating and two-color gating. An extreme ultraviolet supercontinuum supporting 130 as was generated with neon gas using 9 fs laser pulses. We discovered a unique dependence of the harmonic spectra on the carrier-envelope phase of the laser fields, which repeats every 2 pi radians.
The effects of variation of the grating separation in a stretcher on the carrier-envelope (CE) phase of amplified pulses are investigated. By translating one of the telescope mirrors in the stretcher with a piezoelectric transducer, it is found that a 1 mum change of the distance causes a 3.7+/-1.2 rad shift of the CE phase, which is consistent with theoretical estimations. The results indicate that optical mounts used for gratings and telescope mirrors must be interferometrically stable; otherwise their vibration and thermal drift will cause significant phase error. The CE phase drift was corrected by feedback controlling the grating separation.
We present a simple one-dimensional lattice gas model, which describes very well the equilibrium and kinetic behaviors of water confined in a thin carbon nanotube found in an atomistic molecular dynamics simulation [G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London), 414, 188 (2001)]. The model parameters correspond to various physical interactions and can be calculated or estimated by using statistical mechanics. Then, the roles of all interactions in the water filling, emptying, and transporting processes are clearly understood. Our results indicate that the interaction from the water molecules outside the nanotube plays a key role in these processes and the interaction can be simply treated as an average effect of the bulk water.
The authors report the generation of 1.2mJ pulses with a duration of 5.6fs from a neon filled hollow-core fiber seeded with carrier-envelope phase stabilized 2.2mJ, 25fs pulses. The carrier-envelope phase after the fiber was measured by a second, out-loop f-to-2f interferometer. With seed pulse power locked, the carrier-envelope phase of the two-cycle pulses is controlled to a standard deviation of 370mrad. The peak power of the carrier-envelope phase stabilized pulses, 0.2TW, is twice that previously generated. The significance of seed pulse energy stability for carrier-envelope phase stabilization of few-cycle laser pulses is demonstrated.
For f-to-2f interferometers based on white-light generation in sapphire plates, the accuracy of the carrier-envelope (CE) phase measurement and stabilization is affected by the laser energy fluctuation. The coupling coefficient between the CE phase and the laser energy has been determined by modulating the pulse energy in an in-loop f-to-2f interferometer while measuring the CE phase variation with an out-loop interferometer. When the total spectral phase measured by the in-loop interferometer was locked, a 1% change in laser energy caused a 160 mrad shift in the CE phase of the output pulses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.