In this paper, we propose a novel approach for text detection in natural images. Both local and global cues are taken into account for localizing text lines in a coarse-to-fine procedure. First, a Fully Convolutional Network (FCN) model is trained to predict the salient map of text regions in a holistic manner. Then, text line hypotheses are estimated by combining the salient map and character components. Finally, another FCN classifier is used to predict the centroid of each character, in order to remove the false hypotheses. The framework is general for handling text in multiple orientations, languages and fonts. The proposed method consistently achieves the state-of-the-art performance on three text detection benchmarks: MSRA-TD500, ICDAR2015 and ICDAR2013.
Imagery texts are usually organized as a hierarchy of several visual elements, i.e. characters, words, text lines and text blocks. Among these elements, character is the most basic one for various languages such as Western, Chinese, Japanese, mathematical expression and etc. It is natural and convenient to construct a common text detection engine based on character detectors. However, training character detectors requires a vast of location annotated characters, which are expensive to obtain. Actually, the existing real text datasets are mostly annotated in word or line level. To remedy this dilemma, we propose a weakly supervised framework that can utilize word annotations, either in tight quadrangles or the more loose bounding boxes, for character detector training. When applied in scene text detection, we are thus able to train a robust character detector by exploiting word annotations in the rich large-scale real scene text datasets, e.g. ICDAR15 [19] and . The character detector acts as a key role in the pipeline of our text detection engine. It achieves the state-of-the-art performance on several challenging scene text detection benchmarks. We also demonstrate the flexibility of our pipeline by various scenarios, including deformed text detection and math expression recognition.
With the rapid increase of transnational communication and cooperation, people frequently encounter multilingual scenarios in various situations. In this paper, we are concerned with a relatively new problem: script identification at word or line levels in natural scenes. A large-scale dataset with a great quantity of natural images and 10 types of widely-used languages is constructed and released. In allusion to the challenges in script identification in real-world scenarios, a deep learning based algorithm is proposed. The experiments on the proposed dataset demonstrate that our algorithm achieves superior performance, compared with conventional image classification methods, such as the original CNN architecture and LLC. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.