Two structurally similar trans-bis(pyridine) dichloropalladium(II)- and platinum(II)-type complexes were synthesized and characterized. They both self-assemble in n-hexane to form viscous fluids at lower concentrations, but form metallogels at sufficient concentrations. The viscous solutions were studied by capillary viscosity measurements and UV/Vis absorption spectra monitored during the disassembly process indicated that a metallophilic interaction was involved in the supramolecular polymerization process. For the two supramolecular assemblies, uncommon continuous porous networks were observed by using SEM and TEM revealed that they were built from nanofibers that fused and crosslinked with the increase of concentration. The xerogels of the palladium and platinum complexes were carefully studied by using synchrotron radiation WAXD and EXAFS. The WAXD data show close stacking distances driven by π-π and metal-metal interactions and an evident dimer structure for the platinum complex was found. The coordination bond lengths were extracted from fitting of the EXAFS data. Moreover, close Pt(II) -Pt(II) (Pd(II) -Pd(II) ) and PtCl (PdCl) interactions proposed from DFT calculations in the reported oligo(phenylene ethynylene) (OPE)-based palladium(II) pyridyl supramolecular polymers were also confirmed by using EXAFS. The Pt(II) -Pt(II) interaction is more feasible for supramolecular interaction than the Pd(II) -Pd(II) interaction in our simple case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.