Magnesium hydride is a promising candidate for solid-state hydrogen storage and thermal energy storage applications. A series of Ti-based intermetallic alloy (TiAl, Ti3Al, TiNi, TiFe, TiNb, TiMn2, and TiVMn)-doped MgH2 materials were systematically investigated in this study to improve its hydrogen storage properties. The dehydrogenation and hydrogenation properties were studied by using both thermogravimetric analysis and pressure–composition–temperature (PCT) isothermal to characterize the temperature of dehydrogenation and the kinetics of both desorption and absorption of hydrogen by these doped MgH2. Results show significant improvements of both dehydrogenation and hydrogenation kinetics as a result of adding the Ti intermetallic alloys as catalysts. In particular, the TiMn2-doped Mg demonstrated extraordinary hydrogen absorption capability at room temperature and 1 bar hydrogen pressure. The PCT experiments also show that the hydrogen equilibrium pressures of MgH2 were not affected by these additives.
Efforts to thermodynamically destabilize magnesium hydride (MgH2), so that it can be used for practical hydrogen storage applications, have been a difficult challenge that has eluded scientists for decades. This letter reports that MgH2 can indeed be destabilized by forming solid solution alloys of magnesium with group III and IVB elements, such as indium. Results of this research showed that the equilibrium hydrogen pressure of a Mg-0.1In alloy is 70% higher than that of pure MgH2. The temperature at 1 bar hydrogen pressure (T1bar) of Mg-0.1In alloy was reduced to 262.9 °C from 278.9 °C, which is the T1bar of pure MgH2. Furthermore, the kinetic rates of dehydrogenation of Mg-0.1In alloy hydride doped with a titanium intermetallic (TiMn2) catalyst were also significantly improved compared with those of MgH2.
A method is presented for reconstructing P‐ and S‐velocity distributions from elastic traveltimes and waveforms. The input data consist of crosswell hydrophone records generated by a piezoelectric borehole source. Borehole effects are partially accounted for by using a low‐frequency Green's function to simulate the pressure generated in the fluid‐filled receiver well. The tube waves in the borehole are ignored, on the assumption that they can be removed from the field data by median filtering. In addition, the source‐radiation pattern is partially taken into account by inverting for the equivalent stress components acting on the earth at the source location. The elastic wave equation traveltime and waveform inversion (WTW) method is applied to both synthetic crosswell data and the McElroy field crosswell data. As predicted by theory, results show that elastic WTW tomograms provide a sharper interface image than delineated in the traveltime tomograms. The spatial resolution of the McElroy traveltime tomogram is about 20 m compared to about 3 m and 1.5 m, respectively, for the associated P‐ and S‐velocity WTW tomograms. From these tomograms, detailed porosity maps of the interwell geology are constructed. There is a very good correlation between the P‐velocity tomograms and the P‐velocity log profiles, and there is a good correlation between the smooth parts of the S‐velocity tomogram and the S‐velocity logs. Unfortunately, the high‐wavenumber parts of the S‐velocity tomograms do not correlate well with the high‐wavenumber parts of the S‐velocity logs. We believe this problem is partly caused by not taking into account attenuation effects in the WTW algorithm.
A hybrid wave‐equation traveltime and waveform inversion method is presented that reconstructs the interwell velocity distribution from crosshole seismic data. This inversion method, designated as WTW, retains the advantages of both full wave inversion and traveltime inversion; i.e., it is characterized by reasonably fast convergence which is somewhat independent of the initial model, and it can resolve detailed features of the velocity model. In principle, no traveltime picking is required and the computational cost of the WTW method is about the same as that for full wave inversion. We apply the WTW method to synthetic data and field crosshole data collected by Exxon at their Friendswood, Texas, test site. Results show that the WTW tomograms are much richer in structural information relative to the traveltime tomograms. Subtle structural features in the WTW Friendswood tomogram are resolved to a spatial resolution of about 1.5 m, yet are smeared or completely absent in the traveltime tomogram. This suggests that it might be better to obtain high quality (distinct reflections) crosshole data at intermediate frequencies, compared to intermediate quality data (good quality first arrivals, but the reflections are buried in noise) at high frequencies. Comparison of the reconstructed velocity profile with a log in the source well shows very good agreement within the 0–200 m interval. The 200–300 m interval shows acceptable agreement in the velocity fluctuations, but the tomogram’s velocity profile differs from the sonic log velocities by a DC shift. This highlights both the promise and the difficulty with the WTW method; it can reconstruct both the and high wavenumber parts of the model, but it can have difficulty recovering the very low wavenumber parts of the model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.