Abstract. MicroRNA (miR)-146a-5p functions as a tumor suppressor in various types of cancer. However, the role of miR-146a-5p in the development of triple-negative breast cancer (TNBC) is unclear. The present study aimed to investigate the role of miR-146a-5p in TNBC. The expression level of miR-146a-5p in TNBC tissues and cell lines was initially detected using reverse transcription-quantitative polymerase chain reaction. To predict the target gene of miR-146a-5p, TargetScan software was used and a dual luciferase assay was performed to verify the prediction. Furthermore, in order to explore the role of miR-146a-5p in TNBC, miR-146a-5p was overexpressed in TNBC cells using miR-146a-5p mimics. An MTT assay was performed to detect cell proliferation, and a Transwell assay was conducted to determine cell migration and invasion. Furthermore, western blotting was performed to measure associated protein expression. It was revealed that miR-146a-5p was downregulated in TNBC tissues and cell lines. SOX5 was indicated to be a target gene of miR-146a-5p and was upregulated in TNBC cells. Additionally, miR-146a-5p could inhibit TNBC cell proliferation, migration and invasion, repress the expression of mesenchymal markers (N-cadherin, vimentin and fibronectin) and increase epithelial marker (E-cadherin) expression. Furthermore, SOX5 overexpression eliminated the effects of miR-146a-5p mimics on TNBC cells. In conclusion, the data of the present study indicated that miR-146a-5p inhibits the proliferation and metastasis of TNBC cells by regulating SOX5.
Despite recent improvements in the comprehensive therapy of malignancy, metastatic colorectal cancer (mCRC) continues to have a poor prognosis. Notably, 5% of mCRC cases harbor Erb-B2 receptor tyrosine kinase 2 (ERBB2) alterations. ERBB2, commonly referred to as human epidermal growth factor receptor 2, is a member of the human epidermal growth factor receptor family of protein tyrosine kinases. In addition to being a recognized therapeutic target in the treatment of gastric and breast malignancies, it is considered crucial in the management of CRC. In this review, we describe the molecular biology of ERBB2 from the perspective of biomarkers for mCRC-targeted therapy, including receptor structures, signaling pathways, gene alterations, and their detection methods. We also discuss the relationship between ERBB2 aberrations and the underlying mechanisms of resistance to anti-EGFR therapy and immunotherapy tolerance in these patients with a focus on novel targeted therapeutics and ongoing clinical trials. This may aid the development of a new standard of care in patients with ERBB2-positive mCRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.