Embryo implantation is essential for normal pregnancy, and the process of decidualization is critical for embryo implantation. However, the mechanism of decidualization during early pregnancy is still unknown. Forkhead box O3a (FOXO3a) is the most important functional transcription factor of the forkhead box family and is a highly conserved transcription factor of apoptosis-related genes. In the mouse uterus, FOXO3a was found to be expressed regularly from Days 1-7 of early pregnancy. Upon further exploration, it was found that FOXO3a was expressed at significantly higher levels at the implantation site than at the interimplantation site on Days 5-7 of pregnancy. Under artificial decidualization, FOXO3a was highly expressed in the first and second decidual zones. After decidualization, the expression of FOXO3a was significantly increased both in vivo and vitro. In primary stromal cells, apoptosis was reduced by decreased expression of FOXO3a after inducing decidualization. Moreover, when FOXO3a-small interfering RNA was transfected into the uteri of mice, the expression of decidualization- and apoptosis-related factors was impaired. Thus, FOXO3a might play an important role in decidualization during early pregnancy, and cell apoptosis might be one of pathways for FOXO3a-regulated decidualization.
Previous research on the role of insulin has focused on metabolism. This study investigated the effect of insulin on angiogenesis in endometrial decidualization. High insulin-treated mouse model was constructed by subcutaneous injection of insulin. Venous blood glucose, serum insulin, P4, E2, FSH and LH levels in the pregnant mice were detected by ELISA. Decidual markers, angiogenesis factors and decidual vascular network were detected during decidualization in the pregnant mouse model and an artificially induced decidualization mouse model. Tube formation ability and angiogenesis factors expression were also detected in high insulin-treated HUVECS cells. To confirm whether autophagy participates in hyperinsulinemia-impaired decidual angiogenesis, autophagy was detected in vivo and in vitro. During decidualization, in the condition of high insulin, serum insulin and blood glucose were significantly higher, while ovarian steroid hormones were also disordered (P < 0.05), decidual markers BMP2 and PRL were significantly lower (P < 0.05). Uterine CD34 staining showed that the size of the vascular sinus was significantly smaller than that in control. Endometrial VEGFA was significantly decreased after treatment with high insulin in vivo and in vitro (P < 0.05), whereas ANG-1 and TIE2 expression was significantly increased (P < 0.05). In addition, aberrant expression of autophagy markers revealed that autophagy participates in endometrial angiogenesis during decidualization (P < 0.05). After treatment with the autophagy inhibitor 3-MA in HUVEC, the originally damaged cell tube formation ability and VEGFA expression were repaired. This study suggests that endometrial angiogenesis during decidualization was impaired by hyperinsulinemia in early pregnant mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.