Multi-agent unmanned aerial vehicle (UAV) teaming becomes an essential part in science mission, modern warfare surveillance, and disaster rescuing. This paper proposes a decentralized UAV swarm persistent monitoring strategy in realizing continuous sensing coverage and network service. A two-layer (high altitude and low altitude) UAV teaming hierarchical structure is adopted in realizing the accurate object tracking in the area of interest (AOI). By introducing the UAV communication channel model in its path planning, both centralized and decentralized control schemes would be evaluated in the waypoint tracking simulation. The UAV swarm network service and object tracking are measured by metrics of communication link quality and waypoints tracking accuracy. UAV swarm network connectivity are evaluated over different aspects, such as stability and volatility. The comparison of proposed algorithms is presented with simulations. The result shows that the decentralized scheme outperforms the centralized scheme in the mission of persistent surveillance, especially on maintaining the stability of inner UAV swarm network while tracking moving objects.
The multipath effect is one of the main error sources in the Global Satellite Navigation Systems (GNSSs). The code correlation reference waveform (CCRW) technique is an effective multipath mitigation algorithm for the binary phase shift keying (BPSK) signal. However, it encounters the false lock problem in code tracking, when applied to the binary offset carrier (BOC) signals. A least-squares approximation method of the CCRW design scheme is proposed, utilizing the truncated singular value decomposition method. This algorithm was performed for the BPSK signal, BOC(1,1) signal, BOC(2,1) signal, BOC(6,1) and BOC(7,1) signal. The approximation results of CCRWs were presented. Furthermore, the performances of the approximation results are analyzed in terms of the multipath error envelope and the tracking jitter. The results show that the proposed method can realize coherent and non-coherent CCRW discriminators without false lock points. Generally, there is performance degradation in the tracking jitter, if compared to the CCRW discriminator. However, the performance promotions in the multipath error envelope for the BOC(1,1) and BPSK signals makes the discriminator attractive, and it can be applied to high-order BOC signals.
Radio frequency (RF) signal classification has significantly been used for detecting and identifying the features of unknown unmanned aerial vehicles (UAVs). This paper proposes a method using empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) on extracting the communication channel characteristics of intruding UAVs. The decomposed intrinsic mode functions (IMFs) except noise components are selected for RF signal pattern recognition based on machine learning (ML). The classification results show that the denoising effects introduced by EMD and EEMD could both fit in improving the detection accuracy with different features of RF communication channel, especially on identifying timevarying RF signal sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.