The detection of target events is an important research area in the field of wireless sensor networks (WSNs). In recent years, many researchers have discussed the problem of WSN target coverage in a two-dimensional (2D) coordinate system. However, the target detection problem in a 3D coordinate system has not been investigated extensively, and it is difficult to improve the network coverage ratio while ensuring reliable performance of WSN. In addition, sensor nodes that are initially deployed randomly cannot achieve accurate target coverage in practice. Moreover, it is necessary to consider the energy consumption factor owing to the limited energy of the sensor node itself. Hence, with the objective of addressing the target event coverage problem of WSNs in 3D space applications, this paper proposes a target detection coverage algorithm based on 3D-Voronoi partitioning for WSNs (3D-VPCA) in order to ensure reliable performance of the entire network. First, we extend Voronoi division based on the 2D plane, which allows 3D-Voronoi partitioning of sensor nodes in 3D regions. Then, it is optimized according to the 3D-Voronoi neighbouring node partitioning characteristics and combined with the improved algorithm. Next, we set the priority coverage mechanism and introduce the correlation force between the target point and the sensor node in the algorithm, so that the sensor node can move to the target position for accurate coverage. Finally, we carry out related simulation experiments to evaluate the performance and accuracy of the proposed algorithm. The results show that the proposed algorithm can effectively improve the coverage performance of the network while ensuring a high overall coverage ratio.
With the wide application of Channel State Information (CSI) in the field of sensing, the accuracy of positioning accuracy of indoor fingerprint positioning is increasingly necessary. The flexibility of the CSI signals may lead to an increase in fingerprint noise and inaccurate data classification. This paper presents an indoor localization algorithm based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Endpoints-Clipping (EC) CSI amplitude, and Support Vector Machine (EC-SVM). In the offline phase, the CSI amplitude information collected through the three channels is combined and clipped using the EC, and then a fingerprint database is obtained. In the online phase, the SVM is used to train the data in the fingerprint database, and the corresponding relationship is found with the CSI data collected in real time to perform matching and positioning. The experimental results show that the positioning accuracy of the EC-SVM algorithm is superior to the state-of-art indoor CSI-based localization technique.
In recent years, the researchers have witnessed the important role of air gesture recognition in human-computer interactive (HCI), smart home, and virtual reality (VR). The traditional air gesture recognition method mainly depends on external equipment (such as special sensors and cameras) whose costs are high and also with a limited application scene. In this paper, we attempt to utilize channel state information (CSI) derived from a WLAN physical layer, a Wi-Fibased air gesture recognition system, namely, WiNum, which solves the problems of users’ privacy and energy consumption compared with the approaches using wearable sensors and depth cameras. In the process of recognizing the WiNum method, the collected raw data of CSI should be screened, among which can reflect the gesture motion. Meanwhile, the screened data should be preprocessed by noise reduction and linear transformation. After preprocessing, the joint of amplitude information and phase information is extracted, to match and recognize different air gestures by using the S-DTW algorithm which combines dynamic time warping algorithm (DTW) and support vector machine (SVM) properties. Comprehensive experiments demonstrate that under two different indoor scenes, WiNum can achieve higher recognition accuracy for air number gestures; the average recognition accuracy of each motion reached more than 93%, in order to achieve effective recognition of air gestures.
Understanding of aqueous solutions is of significance to a wide range of fields. Crown macrocycles emerge as a new generation of model hosts for studying the chemistry of water and aqueous supramolecular chemistry. Herein, we present the oxacrown ether cyanobenzo-21-crown-7 ether (C7CN), and its selenium-containing counterpart selencrown ether C7SeCN possess only one chalcogen atom diverse in structure but exhibits dramatic difference in shape, solvation (e.g., hydration), and consequent thermodynamics of guest binding experimentally. The hydrogen bond strength of Se···H is similar to that of O···H, but theoretical calculations pointed out that there is a prominent electrostatic potential change for the entire molecule caused by Se substitution, which leads to the decrease of the interactions between water clusters and crown macrocycles thermodynamically and kinetically. Results established that C7CN and C7SeCN provide an easy-to-access model pair to exclusively probe water–solute interaction and host pocket wettability change caused by one atom substitution.
In directional sensor networks research, target event detection is currently an active research area, with applications in underwater target monitoring, forest fire warnings, border areas, and other important activities. Previous studies have often discussed target coverage in two-dimensional sensor networks, but these studies cannot be extensively applied to three-dimensional networks. Additionally, most of the previous target coverage detection models are based on a circular or omnidirectional sensing model. More importantly, if the directional sensor network does not design a better coverage algorithm in the coverage-monitoring process, its nodes’ energy consumption will increase and the network lifetime will be significantly shortened. With the objective of addressing three-dimensional target coverage in applications, this study proposes a dynamic adjustment optimisation algorithm for three-dimensional directional sensor networks based on a spherical sector coverage model, which improves the lifetime and coverage ratio of the network. First, we redefine the directional nodes’ sensing model and use the three-dimensional Voronoi method to divide the regions where the nodes are located. Then, we introduce a correlation force between the target and the sensor node to optimise the algorithm’s coverage mechanism, so that the sensor node can accurately move to the specified position for target coverage. Finally, by verifying the feasibility and accuracy of the proposed algorithm, the simulation experiments demonstrate that the proposed algorithm can effectively improve the network coverage and node utilisation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.