The drift of inertial navigation system (INS) will lead to large navigation error when a low-cost INS is used in microaerial vehicles (MAV). To overcome the above problem, an INS/optical flow/magnetometer integrated navigation scheme is proposed for GPS-denied environment in this paper. The scheme, which is based on extended Kalman filter, combines INS and optical flow information to estimate the velocity and position of MAV. The gyro, accelerator, and magnetometer information are fused together to estimate the MAV attitude when the MAV is at static state or uniformly moving state; and the gyro only is used to estimate the MAV attitude when the MAV is accelerating or decelerating. The MAV flight data is used to verify the proposed integrated navigation scheme, and the verification results show that the proposed scheme can effectively reduce the errors of navigation parameters and improve navigation precision.
A novel method based on Pulse Coupled Neural Network(PCNN) algorithm for the highly accurate and robust compass information calculation from the polarized skylight imaging is proposed,which showed good accuracy and reliability especially under cloudy weather,surrounding shielding and moon light. The degree of polarization (DOP) combined with the angle of polarization (AOP), calculated from the full sky polarization image, were used for the compass information caculation. Due to the high sensitivity to the environments, DOP was used to judge the destruction of polarized information using the PCNN algorithm. Only areas with high accuracy of AOP were kept after the DOP PCNN filtering, thereby greatly increasing the compass accuracy and robustness. From the experimental results, it was shown that the compass accuracy was 0.1805° under clear weather. This method was also proven to be applicable under conditions of shielding by clouds, trees and buildings, with a compass accuracy better than 1°. With weak polarization information sources, such as moonlight, this method was shown experimentally to have an accuracy of 0.878°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.