This paper presents a novel human-like learning controller to interact with unknown environments. Strictly derived from the minimization of instability, motion error, and effort, the controller compensates for the disturbance in the environment in interaction tasks by adapting feedforward force and impedance. In contrast with conventional learning controllers, the new controller can deal with unstable situations that are typical of tool use and gradually acquire a desired stability margin. Simulations show that this controller is a good model of human motor adaptation. Robotic implementations further demonstrate its capabilities to optimally adapt interaction with dynamic environments and humans in joint torque controlled robots and variable impedance actuators, without requiring interaction force sensing.
Robots with coordinated dual arms are able to perform more complicated tasks that a single manipulator could hardly achieve. However, more rigorous motion precision is required to guarantee effective cooperation between the dual arms, especially when they grasp a common object. In this case, the internal forces applied on the object must also be considered in addition to the external forces. Therefore, a prescribed tracking performance at both transient and steady states is first specified, and then a controller is synthesized to rigorously guarantee the specified motion performance. In the presence of unknown dynamics of both the robot arms and the manipulated object, the neural networks approximation technique is employed to compensate for uncertainties. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design. Effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.