By the method of injection molding combined with thermally induced phase separation (TIPS), a novel nerve conduit with a plurality of channels and macro-/microporous architecture was fabricated using poly (lactide-co-glycolide) (PLGA, 75:25; Mn=1.22x10(5)). The diameter of the conduits and the number of channels could be regulated by changing the parameters of the mold, and the porosity of the conduit was as high as 95.4%. Meanwhile, the hierarchical pore architecture of the walls could be controlled through varying the solution concentration and the contents of porogen. The degradation study in vitro showed that 7-channel conduit could hold its apparent geometry for about 12 weeks in phosphate buffer solution (PBS) at 37degreesC, and the pH values of the degradation solution were detected in the range 4.1-4.5. The influences of the conduit architecture on the cell attachment, spreading, and proliferation were evaluated by culturing rat mesenchymal stem cells alone or together with Schwann cells in vitro. The implantation of the PLGA conduit in the spinal cord showed that it had good biocompatibility, and no obvious inflammatory response was detected. Therefore, the results implied that these PLGA multiple-channel nerve conduits have the potential use for spinal cord injury.
Nerve conduits (NCs) with multiple longitudinally aligned channels, being mimicking the natural nerves anatomical structure, have been attracted more and more attentions. However, some specific structural parameters of a conduit that would be beneficial for further improvement of neural tissue regeneration were not comprehensively considered. Using a systematized device and combining low-pressure injection molding and thermal-induced phase separation, we fabricated 33-channel NCs (outer diameter 3.5 mm, channel diameter 200 mm) with different well-defined microscopic features, including NCs with a nano-fibrous microstructure (NNC), NCs with microspherical pores and nano-fibrous pore walls (MNC), and NCs with a ladder-like microstructure (LNC). The porosities of these NCs were *90% and were independent of the fine microstructures, whereas the pore size distributions were clearly distinct. The adsorption of bovine serum albumin for the NNC was a result of having the highest specific surface area, which was 3.5 times that of the LNC. But the mechanical strength of NNC was lower than that of two groups because of a relative high crystallinity and brittle characteristics. In vitro nerve stem cells (NSCs) incubation revealed that 14 days after seeding the NSCs, 31.32% cells were Map2 positive in the NNC group, as opposed to 15.76% in the LNC group and 23.29% in the MNC group. Addition of NGF into the culture medium, being distinctive specific surface area and a high adsorption of proteon for NNC, 81.11% of neurons derived from the differentiation of the seeded NSCs was obtained. As a result of imitating the physical structure of the basement membrane of the neural matrix, the nanofibrous structure of the NCs has facilitated the differentiation of NSCs into neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.