Bistabilities of two equilibrium states discovered in the coupled side-by-side Kármán wakes are investigated through Floquet analysis and direct numerical simulation (DNS) with different initial conditions over a range of gap-to-diameter ratio ( $g^*= 0.2\text {--}3.5$ ) and Reynolds number ( $Re = 47\text {--}100$ ). Two bistabilities are found in the transitional $g^*-Re$ regions from in-phase (IP) to anti-phase (AP) vortex shedding states. By initialising the flow in DNS with zero initial conditions, the flow in the first bistable region (i.e. bistable IP/FF $_C$ at $g^*= 1.4 \text {--} 2.0$ , where FF $_C$ denotes the conditional flip-flop flow) attains flip-flop (FF) flow, it settles into the IP state by initialising the flow with an IP flow. The second bistability is observed between cylinder-scale IP and AP states at large $g^*$ ( $=$ 2.0–3.5). The transition from the FF $_C$ to IP is dependent on initial conditions and irreversible over the parameter space, meaning that the flow cannot revert back to the FF $_C$ state once it jumps to the IP state irrespective of the direction of $Re$ variations. Its counterpart for the bistable IP/AP state is reversible. We also found that the FF $_C$ flow in the first bistable region is primarily bifurcated from synchronised AP with cluster-scale features, possibly because the cluster-scale AP flow is inherently unstable to FF flow instabilities. It is demonstrated that the irreversible bistability exists in other interacting wakes around multiple cylinders. A good understanding of flow bistabilities is pivotal to flow control applications and the interpretation of desynchronised flow features observed at high $Re$ values.
Two-dimensional direct numerical simulation and Floquet stability analysis have been performed at moderate Keulegan–Carpenter number ($KC$) and low Reynolds number ($Re$) for a square cross-section cylinder with its face normal to the oscillatory flow. Based on the numerical simulations a map of flow regimes is formed and compared to the map of flow around an oscillating circular cylinder by Tatsuno & Bearman (J. Fluid Mech., vol. 211, 1990, pp. 157–182). Two new flow regimes have been observed, namely A$^{\prime }$ and F$^{\prime }$. The regime A$^{\prime }$ found at low $KC$ is characterised by the transverse convection of fluid particles perpendicular to the motion; and the regime F$^{\prime }$ found at high $KC$ shows a quasi-periodic feature with a well-defined secondary period, which is larger than the oscillation period. The Floquet analysis demonstrates that when the two-dimensional flow breaks the reflection symmetry about the axis of oscillation, the quasi-periodic instability and the synchronous instability with the imposed oscillation occur alternately for the square cylinder along the curve of marginal stability. This alternate pattern in instabilities leads to four distinct flow regimes. When compared to the vortex shedding in otherwise unidirectional flow, the two quasi-periodic flow regimes are observed when the oscillation frequency is close to the Strouhal frequency (or to half of it). Both the flow regimes and marginal stability curve shift in the $(Re,KC)$-space compared to the oscillatory flow around a circular cylinder and this shift appears to be consistent with the change in vortex formation time associated with the lower Strouhal frequency of the square cylinder.
Oscillatory flow around a circular cylinder close to a plane boundary is numerically investigated at low-to-intermediate Keulegan–Carpenter ($KC$) and Stokes numbers ($\unicode[STIX]{x1D6FD}$) for different gap-to-diameter ratios ($e/D$). A set of unique flow regimes is observed and classified based on the established nomenclature in the ($KC,\unicode[STIX]{x1D6FD}$)-space. It is found that the flow is not only influenced by $e/D$ but also by the ratio of the thickness of the Stokes boundary layer ($\unicode[STIX]{x1D6FF}$) to the gap size (e). At relatively large $\unicode[STIX]{x1D6FF}/e$ values, vortex shedding through the gap is suppressed and vortices are only shed from the top of the cylinder. At intermediate values of $\unicode[STIX]{x1D6FF}/e$, flow through the gap is enhanced, resulting in horizontal gap vortex shedding. As $\unicode[STIX]{x1D6FF}/e$ is further reduced below a critical value, the influence of $\unicode[STIX]{x1D6FF}/e$ becomes negligible and the flow is largely dependent on $e/D$. A hysteresis phenomenon is observed for the transitions in the flow regime. The physical mechanisms responsible for the hysteresis and the variation of marginal stability curves with $e/D$ are explored at $KC=6$ through specifically designed numerical simulations. The Stokes boundary layer over the plane boundary is found to be responsible for the relatively large hysteresis range over $0.25<e/D<1.0$. Three mechanisms have been identified to the change of the marginal stability curve over $e/D$, which are the blockage effect due to the geometry setting, the favourable pressure gradient over the gap and the location of the leading eigenmode relative to the cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.