ImportanceSARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals.ObjectiveTo develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections.Design, Setting, and ParticipantsProspective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling.ExposureSARS-CoV-2 infection.Main Outcomes and MeasuresPASC and 44 participant-reported symptoms (with severity thresholds).ResultsA total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months.Conclusions and RelevanceA definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC.
Generating molecular graphs with desired chemical properties driven by deep graph generative models provides a very promising way to accelerate drug discovery process. Such graph generative models usually consist of two steps: learning latent representations and generation of molecular graphs. However, to generate novel and chemically-valid molecular graphs from latent representations is very challenging because of the chemical constraints and combinatorial complexity of molecular graphs. In this paper, we propose MoFlow, a flow-based graph generative model to learn invertible mappings between molecular graphs and their latent representations. To generate molecular graphs, our MoFlow first generates bonds (edges) through a Glow based model, then generates atoms (nodes) given bonds by a novel graph conditional flow, and finally assembles them into a chemically valid molecular graph with a posthoc validity correction. Our MoFlow has merits including exact and tractable likelihood training, efficient one-pass embedding and generation, chemical validity guarantees, 100% reconstruction of training data, and good generalization ability. We validate our model by four tasks: molecular graph generation and reconstruction, visualization of the continuous latent space, property optimization, and constrained property optimization. Our MoFlow achieves stateof-the-art performance, which implies its potential efficiency and effectiveness to explore large chemical space for drug discovery.
The post-acute sequelae of SARS-CoV-2 infection (PASC) refers to a broad spectrum of symptoms and signs that are persistent, exacerbated or newly incident in the period after acute SARS-CoV-2 infection. Most studies have examined these conditions individually without providing evidence on co-occurring conditions. In this study, we leveraged the electronic health record data of two large cohorts, INSIGHT and OneFlorida+, from the national Patient-Centered Clinical Research Network. We created a development cohort from INSIGHT and a validation cohort from OneFlorida+ including 20,881 and 13,724 patients, respectively, who were SARS-CoV-2 infected, and we investigated their newly incident diagnoses 30–180 days after a documented SARS-CoV-2 infection. Through machine learning analysis of over 137 symptoms and conditions, we identified four reproducible PASC subphenotypes, dominated by cardiac and renal (including 33.75% and 25.43% of the patients in the development and validation cohorts); respiratory, sleep and anxiety (32.75% and 38.48%); musculoskeletal and nervous system (23.37% and 23.35%); and digestive and respiratory system (10.14% and 12.74%) sequelae. These subphenotypes were associated with distinct patient demographics, underlying conditions before SARS-CoV-2 infection and acute infection phase severity. Our study provides insights into the heterogeneity of PASC and may inform stratified decision-making in the management of PASC conditions.
Background Compared to white individuals, Black and Hispanic individuals have higher rates of COVID-19 hospitalization and death. Less is known about racial/ethnic differences in post-acute sequelae of SARS-CoV-2 infection (PASC). Objective Examine racial/ethnic differences in potential PASC symptoms and conditions among hospitalized and non-hospitalized COVID-19 patients. Design Retrospective cohort study using data from electronic health records. Participants 62,339 patients with COVID-19 and 247,881 patients without COVID-19 in New York City between March 2020 and October 2021. Main Measures New symptoms and conditions 31–180 days after COVID-19 diagnosis. Key Results The final study population included 29,331 white patients (47.1%), 12,638 Black patients (20.3%), and 20,370 Hispanic patients (32.7%) diagnosed with COVID-19. After adjusting for confounders, significant racial/ethnic differences in incident symptoms and conditions existed among both hospitalized and non-hospitalized patients. For example, 31–180 days after a positive SARS-CoV-2 test, hospitalized Black patients had higher odds of being diagnosed with diabetes (adjusted odds ratio [OR]: 1.96, 95% confidence interval [CI]: 1.50—2.56, q<0.001) and headaches (OR: 1.52, 95% CI: 1.11—2.08, q=0.02), compared to hospitalized white patients. Hospitalized Hispanic patients had higher odds of headaches (OR: 1.62, 95% CI: 1.21—2.17, q=0.003) and dyspnea (OR: 1.22, 95% CI: 1.05—1.42, q=0.02), compared to hospitalized white patients. Among non-hospitalized patients, Black patients had higher odds of being diagnosed with pulmonary embolism (OR: 1.68, 95% CI: 1.20—2.36, q=0.009) and diabetes (OR: 2.13, 95% CI: 1.75—2.58, q<0.001), but lower odds of encephalopathy (OR: 0.58, 95% CI: 0.45—0.75, q<0.001), compared to white patients. Hispanic patients had higher odds of being diagnosed with headaches (OR: 1.41, 95% CI: 1.24—1.60, q<0.001) and chest pain (OR: 1.50, 95% CI: 1.35—1.67, q < 0.001), but lower odds of encephalopathy (OR: 0.64, 95% CI: 0.51—0.80, q<0.001). Conclusions Compared to white patients, patients from racial/ethnic minority groups had significantly different odds of developing potential PASC symptoms and conditions. Future research should examine the reasons for these differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.