Objective
Human adipose-derived mesenchymal progenitor cells (haMPCs) are stem cells with multiple differentiation potential and immunomodulatory function. Re-Join® comprises in vitro expanded haMPCs from adipose tissue of patients combined with cell suspension solution. This study was undertaken to evaluate the efficacy and safety of Re-Join® in patients with symptomatic knee osteoarthritis (OA).
Methods
Patients with Kellgren–Lawrence grade 1–3 knee OA were recruited from two centers and randomized to receive intra-articular injection of Re-Join® or HA. Pain and function were assessed by using WOMAC score, VAS, and SF-36. Magnetic resonance imaging (MRI) analysis was performed to measure cartilage repair. Adverse events (AEs) were collected.
Results
Fifty-three patients were randomized. Significant improvements in WOMAC, VAS, and SF-36 scores were observed in both groups at months 6 and 12 compared with baseline. Compared with the HA group, significantly more patients achieved 50% improvement of WOMAC and a trend of more patients achieved a 70% improvement rate in Re-Join® group after 12 months. Meanwhile, there was notably more increase in articular cartilage volume of both knees in the Re-Join® group than in the HA group after 12 months as measured by MRI. AEs were comparable between two groups. Most AEs were mild and moderate except one SAE of right knee joint infection in the HA group.
Conclusions
Significant improvements in joint function, pain, quality of life, and cartilage regeneration were observed in Re-Join®-treated knee OA patients with good tolerance in a period of 12 months.
Trial registration
ClinicalTrials.gov Identifier:
NCT02162693
. Registered 13 June 2014.
Electronic supplementary material
The online version of this article (10.1186/s13287-019-1248-3) contains supplementary material, which is available to authorized users.
The preclinical study established the safety and efficacy of haMSCs. Intra-articular injections of haMSCs were safe and improved pain, function and cartilage volume of the knee joint, rendering them a promising novel treatment for knee osteoarthritis. The dosage of 5 × 10 haMSCs exhibited the highest improvement (ClinicalTrials.gov Identifier: NCT01809769).
Mesenchymal stromal cell‐derived extracellular vesicles (MSC‐EVs) turn out to be a promising source of cell‐free therapy. Here, we investigated the biodistribution and effect of nebulized human adipose‐derived MSC‐EVs (haMSC‐EVs) in the preclinical lung injury model and explored the safety of nebulized haMSC‐EVs in healthy volunteers. DiR‐labelled haMSC‐EVs were used to explore the distribution of nebulized haMSC‐EVs in the murine model. Pseudomonas aeruginosa‐induced murine lung injury model was established, and survival rate, as well as WBC counts, histology, IL‐6, TNF‐α and IL‐10 levels in bronchoalveolar lavage fluid (BALF) were measured to explore the optimal therapeutic dose of haMSC‐EVs through the nebulized route. Twenty‐four healthy volunteers were involved and received the haMSC‐EVs once, ranging from 2 × 108 particles to 16 × 108 particles (MEXVT study, NCT04313647). Nebulizing haMSC‐EVs improved survival rate to 80% at 96 h in P. aeruginosa‐induced murine lung injury model by decreasing lung inflammation and histological severity. All volunteers tolerated the haMSC‐EVs nebulization well, and no serious adverse events were observed from starting nebulization to the 7th day after nebulization. These findings suggest that nebulized haMSC‐EVs could be a promising therapeutic strategy, offering preliminary evidence to promote the future clinical applications of nebulized haMSC‐EVs in lung injury diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.