The poor dynamic performance problem of a Full-Bridge converter under a traditional control strategy is investigated in this study. A new parameter adaptive terminal sliding mode control policy is developed for a Full-Bridge DC-DC converter, by combining the integral part with the power function and differential function in the design of the sliding surface. In theory, the steady-state error of the system can approach zero within a short time. To manage the un-ideal situation after using a fixed value of power γ, an improved γ adaptive algorithm is proposed. The system output is tracked and γ is adjusted in real time. The effect of the system can be guaranteed always in an optimal state. Finally, simulation results are provided to verify the performance of the proposed design method under different conditions.
With the continued development of the new energy vehicle industry, two-stage isolated AC/DC converters are widely used because of their simple topology and easy control characteristics. In this study, we investigate the front-stage Buck power factor correction (PFC) converter and rear-stage full-bridge converter. The main circuit design and component selection were completed through a detailed analysis of the circuit characteristics. In terms of the control strategy, the front-stage adopting PI control and parameter adaptive terminal sliding mode control strategy were proposed for the rear-stage full-bridge converter. This new compound control strategy ensures an optimal regulation of the system under different operating conditions. Simulation analysis verified the correctness of the system topology and control strategy. Based on an analysis of the main parameters of the system, a low-power experimental prototype was trial-produced. The experimental results show that under the same load switching conditions, the parameter-adaptive terminal sliding mode control enhanced faster dynamic regulation and stronger robustness than the conventional PI control. The study is also a good reference in terms of engineering work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.